Power BI应用案例:简单关联分析-分析两个产品的关联销售关系

本文介绍了一种利用PowerBI进行产品关联分析的方法,通过分析同一销售单中不同产品的购买情况,挖掘产品间潜在的联系,以提升销售策略。具体步骤包括数据导入、销售明细汇总、产品信息关联、剔除自身货号、计算关联销售情况及矩阵图可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过关联分析,挖掘不同产品间的联系,以能更好地分析客户需求,提高销量。

一、示例数据

(1)销售明细表,包含字段:销售日期、员工工号、货号、销售单编号、销量、销售额、会员ID

(2)产品信息表,包括货号、年份、季度、上市日期、类别、性别、系列、产品名称、零售价格

二、分析任务

分析同一个销售单中,不同产品被一起购买的情况,并进行可视化展示。

三、分析过程

(1)导入数据到Power BI

获取数据源,导入本例的excel表格式数据到Power BI。

(2)汇总销售明细表

使用分组依据功能,按销售单编号、货号、销售日期,对销量进行汇总。

(3)复制产品信息表

(4)关联销售明细到产品信息

按照“货号”列,对两个表进行合并

展开销售单编号

(5)关联销售明细到关联产品信息

按照“货号”列,对两个表进行合并

展开销售单编号

(6)合并产品信息与关联产品信息

展开关联产品的“货号”

(7)剔除自身货号

剔除“货号”等于“关联货号”的记录,得到的每行记录,即为同一销售单中,每个产品销售的两两组合的情况。

添加条件列,判断“货号”与“关联货号”是否相同

筛选货号不同的记录

(8)计算关联销售情况

添加度量值,计算销售单总数、两个货号间的共同销售笔数、共同销售占比。

销售单总数 = DISTINCTCOUNT('销售明细'[销售单编号])

共同销售笔数 = COUNTA('产品信息'[关联产品信息.货号])

共同销售占比= DIVIDE([共同销售笔数],[销售总笔数])

(9)矩阵图可视化关联情况

拉出矩阵图,使用货号作为行,关联货号作为列,总统销售占比作用值。

但是产品关联的矩阵为稀疏矩阵,很多值为空,调整展示样式,使用颜色标注更为直观。

添加条件格式度量值

共同销售占比格式 = IF([共同销售占比]>=0.3,"Green",if([共同销售占比]>=0.2,"Yellow","Red"))

设置条件格式

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰哥数据智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值