题目描述
一个学校里老师要将班上N个同学排成一列,同学被编号为1\sim N1∼N,他采取如下的方法:
-
先将1号同学安排进队列,这时队列中只有他一个人;
-
2-N2−N号同学依次入列,编号为i的同学入列方式为:老师指定编号为i的同学站在编号为1∼(i−1)中某位同学(即之前已经入列的同学)的左边或右边;
-
从队列中去掉M(M<N)个同学,其他同学位置顺序不变。
在所有同学按照上述方法队列排列完毕后,老师想知道从左到右所有同学的编号。
输入输出格式
输入格式:
第11行为一个正整数N,表示了有N个同学。
第2-N2−N行,第ii行包含两个整数k,pk,p,其中k为小于ii的正整数,pp为00或者11。若p为0,则表示将ii号同学插入到k号同学的左边,p为1则表示插入到右边。
第N+1行为一个正整数M,表示去掉的同学数目。
接下来M行,每行一个正整数x,表示将x号同学从队列中移去,如果x号同学已经不在队列中则忽略这一条指令。
输出格式:
11行,包含最多N个空格隔开的正整数,表示了队列从左到右所有同学的编号,行末换行且无空格。
输入输出样例
输入样例#1: 复制
4
1 0
2 1
1 0
2
3
3
输出样例#1: 复制
2 4 1
说明
样例解释:
将同学22插入至同学11左边,此时队列为:
2 121
将同学33插入至同学22右边,此时队列为:
2 3 1231
将同学44插入至同学11左边,此时队列为:
2 3 4 12341
将同学33从队列中移出,此时队列为:
2 4 1241
同学33已经不在队列中,忽略最后一条指令
最终队列:
2 4 1241
数据范围
对于20\%20%的数据,有N≤10N≤10;
对于40\%40%的数据,有N≤1000N≤1000;
对于100\%100%的数据,有N, M≤100000N,M≤100000。
解析:
这题里面涉及到插入和删除,大家可以用链表做,但是需要双向链表,所以我们这里用二叉树,因为这里有左右两个方向,这跟二叉树两个方向的原理很相同。
所以我们上代码:
#include<iostream>
using namespace std;
struct node
{
int lef, rig, vi;//lef是左子树,rig是右子树,vi表示是否已经被删除
}q[200002];
int n, m;
void dfs(int x)///然后中序遍历输出
{
if (x == -1)
return;
dfs(q[x].lef);
if (q[x].vi == 0)
cout << x << " ";
dfs(q[x].rig);
}
int main()
{
int x, y;
cin >> n;
q[1].lef = q[1].rig = -1;
q[1].vi = 0;
for (int i = 2; i <= n; i++)
{
cin >> x >> y;
q[i].lef = q[i].rig = -1, q[i].vi = 0;
if (y == 0)//如果是左边的话
{
if (q[x].lef != 0)//如果当前的节点没有左子树
{
q[i].lef = q[x].lef;//那就插入到左边
q[x].lef = i;
}
else
q[x].lef = i;
}
else
{
if (q[x].rig != 0)
{
q[i].rig = q[x].rig;
q[x].rig = i;
}
else
q[x].rig = i;
}
}
cin >> m;
for (int i = 1; i <= m; i++)//将删除的节点的vi标记为-1
{
int x;
cin >> x;
q[x].vi = -1;
}
dfs(1);
return 0;
}