题目链接,感觉是计数神题。
原题的模型是每一步可以选择顶部 k k k 张牌的一个子集 X i X_i Xi(可以为空)放在袋中,求 m m m 轮之后所有可能的袋子里牌所组成的集合的大小之和。考虑进行转化,只考虑前 k k k 张牌,每张牌都有一个属性 t i ∈ { 0 , 1 , ⋯ , m } t_i \in \{0,1,\cdots,m\} ti∈{0,1,⋯,m}。若 t i = 0 t_i = 0 ti=0,表示这张牌永远不会被放入袋子中,否则表示这张牌会在第 t i t_i ti 轮被放入袋子中。若 S j S_j Sj 表示第 j j j 轮后袋子里的数,最后求 ∑ i = 1 m ∣ S j ∣ \sum \limits_{i = 1}^m |S_j| i=1∑m∣Sj∣。
设两个模型为 A , B A,B A,B,下证明两个模型等价。
证明
A → B A \to B A→B
对于 ∀ i ∈ [ 1 , k ] \forall i \in [1,k] ∀i∈[1,k],若 i ∈ X j i \in X_j i∈Xj 则有 t i = j t_i = j ti=j,否则 t i = 0 t_i = 0 ti=0。B → A B \to A B→A
在进行第 j j j 步前,所有 t i < j t_i < j ti<j 的牌都已经放入袋中,总共有 ∣ { i ∣ t i < j } ∣ |\{i \mid t_i < j\}| ∣{i∣ti<j}∣ 张。由于放入袋中后会进行补位,也就是说我们并不关心补进来的是哪一张真正的原始牌,当进行第 j j j 步前,牌堆的前 k k k 张牌一定存在所有 t i = j t_i = j ti=j 的牌,也就是说第 j j j 步删掉 { i ∣ t i = j } \{i \mid t_i = j\} {i∣ti=j} 是合法操作。
因此可以对每一张牌单独计算贡献。也就是
∑
i
=
1
m
∣
S
j
∣
=
∑
i
=
1
k
1
t
i
>
0
=
∑
i
=
1
k
t
i
\sum \limits_{i = 1}^m |S_j| =\sum \limits_{i = 1}^k \bold{1}_{t_i > 0} = \sum \limits_{i = 1}^k t_i
i=1∑m∣Sj∣=i=1∑k1ti>0=i=1∑kti
。共有
k
k
k 张牌,所有合法的
{
t
i
}
\{t_i\}
{ti} 的方案数为
(
m
+
1
)
k
(m + 1)^k
(m+1)k。强制令
t
i
=
j
t_i = j
ti=j,则这张牌的贡献为
(
m
+
1
)
k
−
1
(m + 1)^{k - 1}
(m+1)k−1。由于
t
i
∈
{
0
,
1
,
⋯
,
m
}
t_i \in \{0,1,\cdots,m\}
ti∈{0,1,⋯,m},则这张牌出现在集合里的次数为
(
0
+
1
+
⋯
+
m
)
×
(
m
+
1
)
k
−
1
(0 + 1 + \cdots + m) \times (m + 1)^{k - 1}
(0+1+⋯+m)×(m+1)k−1,即
m
(
m
+
1
)
k
2
\frac{m(m + 1)^k}{2}
2m(m+1)k。再由于
k
k
k 张牌等价,所以最后的答案为
k m ( m + 1 ) k 2 \dfrac{km(m + 1)^k}{2} 2km(m+1)k