循环-08. 二分法求多项式单根(20)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
杨起帆(浙江大学城市学院)
二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。
二分法的步骤为:
- 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
- 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
- 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
- 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环;
- 如果f((a+b)/2)与f(b)同号,则说明根在区间[a, (a+b)/2],令b=(a+b)/2,重复循环;
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a, b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:3 -1 -3 1 -0.5 0.5
输出样例:0.33
-
-
import java.util.Scanner; public class Main { static double a3,a2,a1,a0; public static void main(String[] args) { // TODO Auto-generated method stub Scanner in = new Scanner(System.in); a3 = in.nextDouble(); a2 = in.nextDouble(); a1 = in.nextDouble(); a0 = in.nextDouble(); double a = in.nextDouble(); double b = in.nextDouble(); double r = 0; while(b-a>1e-3) { double m = (a+b)/2; if(Math.abs(f(m)) < 1e-6 ) { r = m; break; } else if(f(a) == 0) { r = a; break; } else if(f(b) == 0) { r = b; break; } else if(f(m)*f(a)>0) { a = m; } else if(f(m)*f(b)>0) { b = m; } r = m;//!!!当f(m)>1e-6 且a,b均不为根 } System.out.printf("%.2f",r); } public static double f(double x) { return Math.pow(x, 3)*a3 + Math.pow(x, 2)*a2 + x*a1 + a0; } }