HDU1950,单调递增最长子序列(n*lgn)算法

  这题目是经典的DP题目,也可叫作LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目。但是注意的是此题用传统的n^2算法会超时。

 A.
O(n^2)算法分析如下:


(a[1]...a[n] 存的都是输入的数)
1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;
2、若从a[n-1]开始查找,则存在下面的两种可能性:
(1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n];
(2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。
3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:
在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。
4、为算法上的需要,定义一个数组:
int d[n][3];
d[t][0]表示a[t];
d[t][1]表示从i位置到达n的最长不下降子序列的长度;
d[t][2]表示从i位置开始最长不下降子序列的下一个位置。

B.
最长不下降子序列的O(n*logn)算法分析如下:

设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。

现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t
(2)A[x] < A[y] < A[t]
(3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。

注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。

在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

此题链接点击打开链接

附上代码:

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
int a[50000],i,j,t,n,maxn,minn,dp[50000];
int main()
{
    cin>>t;
    while(t--)
    {
        cin>>n;
        memset(a,0,sizeof(a));
        memset(dp,0,sizeof(dp));
        for(i=1;i<=n;i++)
        {
            cin>>a[i];
        }
        int sum=0;
        dp[0]=-9999999;
        for(i=1;i<=n;i++)
        {
            if(a[i]>=dp[sum])
            {
                dp[++sum]=a[i];
            }
            else if(a[i]<dp[sum])
            {
                minn=1;maxn=sum;
                int mid;
                while(minn<maxn-1)
                {
                    mid=(maxn+minn)/2;
                    if(a[i]>dp[mid])
                        minn=mid;
                    else
                        maxn=mid;
                }
                if(dp[minn]>a[i])
                    dp[minn]=a[i];
                else
                    dp[maxn]=a[i];
            }
        }
        cout<<sum<<endl;
    }
    return 0;
}              


 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值