Semantic Kernel:Phi-4试用

微软在去年12月12日首次展示了Phi-4模型,该模型拥有140亿参数,但表现极为强大。在多项测试中表现优异:

  1. GPQA

    (研究生水平问答)和MATH数学基准测试中,Phi-4的表现超过了OpenAI的GPT-4o,并超越同类顶级开源模型Qwen 2.5 - 14BLlama 3.3 - 70B

  2. 美国数学竞赛AMC测试中,Phi-4取得了91.8分,超过了Gemini Pro 1.5GPT-4oClaude 3.5 SonnetQwen 2.5等知名开闭源模型。

  3. 其整体性能甚至媲美4050亿参数Llama 3.1模型。

总结来看,Phi-4在参数量相对较小的情况下,展现出极高的性能与竞争力。

今天Phi-4正式发布,于是满怀激情的再试一把(之前试过提前发布的版本)。下面把试用的过程分享出来。

用ollama下载Phi-4:

88f2e6429b7d82a63fb6610549eca592.png

用SemanticKernel+ollama跑案全:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.Ollama;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using OllamaSharp;
using OpenAI.RealtimeConversation;
using System;
using System.ComponentModel;
#pragma warning disable SKEXP0001
#pragma warning disable SKEXP0010
#pragma warning disable SKEXP0070
await Call();


async Task Call1()
{
    var ollamaApiClient = new OllamaApiClient(new Uri("http://localhost:11434"), "phi4:latest");
    var builder = Kernel.CreateBuilder();
    builder.Services.AddScoped<IChatCompletionService>(_ => ollamaApiClient.AsChatCompletionService());
    var kernel = builder.Build();
    var chatService = kernel.GetRequiredService<IChatCompletionService>();
    while (true)
    {
        Console.Write("用户:");
        var input = Console.ReadLine();
        if (string.IsNullOrWhiteSpace(input))
        {
            break;
        }
        var response = chatService.GetStreamingChatMessageContentsAsync(input);
        var content = "";
        var role = AuthorRole.Assistant;
        Console.ForegroundColor = ConsoleColor.Green;
        Console.Write("助手:");
        await foreach (var message in response)
        {
            Console.Write($"{message.Content}");
            content += message.Content;
            role = message.Role.Value;
        }
        Console.WriteLine();
        Console.ResetColor();
    }
}

先试一个常见的逻辑题:

4f7865a86e758ce57dee3e890556413a.png

再来个文雅的内容生成题:

94199228feed8b2c280eb7b15b83c600.png

再来一个翻译:

9358d367acd59fa8e3a07fad2880aca7.png

为了对比,把Google的翻译拿上来作对比:

e1845cd13f7dfb62bbcb1e5e56dd2870.png

最后再和CahtGPT 4o作个对比:

d3e38c6a20ae6ccf63151f2df928ea7c.png

总体体验下来,作为一个SLM人是十分满意的,用在生产中是相当可以的,不过现在还不支持function calling,另外上面的测试都是在自己的笔记本上跑的,速度是能接受的,如果跑生产,上个显卡,应该就能提速,按理这都不是事。我给phi4打85分,等有了function calling就完美了。

7ec365da96a072a007ee36dd301ee62b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值