机器学习
YYJNY
在读硕士
展开
-
go语言神经网络和深度学习
8.神经网络和深度学习8.1神经网络的术语节点、感知器或神经元:神经网络的基本组成部分。每个节点或神经元接收输入数据并对数据执行操作。执行完操作后,该节点或神经元可能会或不会传递操作到下一个节点/神经元激活:与操作节点相关的输出或者值激活函数:将节点输入转换成输出或激活操作的函数权重或偏差:这些值定义了激活函数中输入和输出数据之间的关系输入层:神经网络的输入层包含一系列节点,用于接收神经网络模型的初始化输入。输出层:神经网路的输出层包含一些列的节点,用于将信息传递到神经网络内部,并将其转换为原创 2020-08-03 17:20:54 · 1871 阅读 · 0 评论 -
go语言学习时间序列和异常检测
时间序列和异常检测时间序列建模有助于我们根据过去的属性预测未来7.1go语言中表示时序数据gonum、gota包中都有时序数据表示方式读数据并将数据制作成时序图import ( "image/color" "log" "os" "gonum.org/v1/plot/vg" "gonum.org/v1/plot" "gonum.org/v1/plot/plotter" "github.com/kniren/gota/dataframe")func main() {原创 2020-08-02 17:15:48 · 1319 阅读 · 0 评论 -
go语言机器学习--集群技术
6集群一组数据可以组织成一个集群,用于检测和标记这些集群的机器学习技术称为集群技术有一组已知的特征或属性与尝试预测的标签和编号相匹配。利用这些已经标记的数据将模型拟合到特定行为上 是有监督的大多数集群技术是无监督的。6.1集群模型术语集群或者群组:每一个集群或者群组都是数据点的集合,集群技术是将数据点组织到其中组内或集群内:从集群过程中产生的集群,可以通过测量集群内数据点与同集群数据点的相似度进行评估。称为组内或集群内相似度评估组间或集群间:集群过程中产生的簇可以通过测量集群内数据点与不同集群原创 2020-08-01 08:34:41 · 628 阅读 · 0 评论 -
go语言机器学习分类之逻辑回归与k-NN
分类5.1分类模型述语类别、标签、种类:预测的各种不同的选择二元分类:从两个种类或类别选取一种 例如是/否欺诈 多元分类:两个以上的类别中选取一种标记数据或者注释数据:真实世界的观察记录、或者是相应类别的配对记录5.2逻辑回归逻辑回归的函数包github.com/xlvector/hector github.com/cdipaolo/goml github.com/sjwhitworth/golearn逻辑函数 f(x) = 1 / 1 + e^-x (指数形式)用比值比的原创 2020-07-28 15:07:45 · 584 阅读 · 0 评论 -
go语言机器学习-回归模型
4.1回归模型的述语回归:回归是一个过程,通过回归可以了解到一个变量随着另外一个变量发生变化响应或者因变量 :y解释变量、自变量、特征、属性、回归量 :x1 x2.....线性回归 :回归假定因变量线性依赖自变量非线性回归:回归假定因变量非线性依赖自变量多元回归:具有多个自变量的回归拟合和训练:参数化一个模型的过程预测:使用参数化模型预测一个特定的因变量的过程##4.2线性回归假设和陷阱线性关系正态性非多重共线性:自变量并不是真正的独立,以某种方式相互依赖无自相关性同方差性陷原创 2020-07-24 16:45:48 · 803 阅读 · 1 评论 -
go语言机器学习第三章评估和验证
3.1评估测量模型如何执行特定数据的过程称为评估确保模型能推广到可能遇到的数据的过程称为验证连续指标评估标准(针对连续的、分类的数据) 均方误差(MSE):所有误差的平方的平均值 ,对异常值比较敏感 平均绝对误差(MAE):所有误差绝对值的平均值 决定系数R方:预测值中所捕获的观察值的方差所占比例 R方是一个百分比,越大越好```gorSquared := stat.RSquaredFrom(observerd,preval,nil) 分类指标评估标准 分类标量的个体评原创 2020-07-23 16:45:33 · 247 阅读 · 0 评论