大致题意:
需要从0~50000内选一些整数点,给出m个约束条件,每个条件表述为,(s,t,c)表示在从s到t的区间内至少有c个点被选择。求最少选择多少个点。
大致思路:
转化为差分约束模型,设dis[i]为从0到i这个区间中被选择的点数。对每个约束,则有dis[t]-dis[s-1]>=c。另外还有一个隐含的约束条件就是0<=dis[i]-dis[i-1]<=1。另外要注意一点通过最短路径算法求出来的一组解当中,所有未知数都达到最大值。因为需要求的是最少加多少个点,所以要用spfa最长路。又由于最长路的三角形不等式为d(v) >= d(u) + w(u, v),所以这里就要按照大于等于关系来构图,最后得到的dis[n]就是答案。
详细代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
const int nMax=105000;
const int mMax=10000500;
const int inf=1<<28;
struct{
int v, next;
int w;
}edge[mMax];
int n, k, head[nMax];
int dis[nMax];
int stack[nMax],m,sum[nMax];
bool vis[nMax];
void addedge(int a,int b,int w){
edge[k].w = w;
edge[k].v=b;
edge[k].next=head[a];
head[a]=k;k++;
}
bool spfa(int s){
int i, top = 0;
memset(vis,0,sizeof(vis));
for(i=0;i<=n;i++)dis[i]=-inf;
dis[s]=0;
stack[++top]=s;
vis[s]=true;
while(top){
int u=stack[top--];
for(i=head[u];i!=0;i=edge[i].next){
int v=edge[i].v;
if(dis[v]<dis[u]+edge[i].w){
dis[v]=dis[u]+edge[i].w;
if(!vis[v]){
vis[v]=true;
stack[++top] = v;
if(++sum[v]>n)return 0;
}
}
}
vis[u]=false;
}
return 1;
}
int main(){
int m,s,t,c,i,j;
while(scanf("%d",&m)!=EOF){
k=1;
n=-1;
memset(sum,0,sizeof(sum));
memset(head,0,sizeof(head));
while(m--){
scanf("%d%d%d",&s,&t,&c);
// s++,t++;
n=max(n,t);
addedge(s-1,t,c);
}
s=n+2;
for(i=0;i<=n;i++){
addedge(i+1,i,-1);
addedge(i,i+1,0);
}
for(i=0;i<=n;i++){
addedge(s,i,0);
}
spfa(s);
cout<<dis[n]<<endl;
}
return 0;
}