Problem Description
有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法?
Input
输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数。
Output
对于每个测试实例,请输出不同走法的数量
Sample Input
2
2
3
Sample Output
12
注意:一开始是站在第一层上,走法为零,dp[1]=0;
递推思想做,当前楼梯曾只能有下面的一层和下面的两层到达,相加即可
状态转移方程
dp[i]=dp[i-1]+dp[i-2];
详细见代码:
code:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int dp[50];
int main()
{
int t;
cin>>t;
while(t--)
{
memset(dp,0,sizeof(dp));
int n;
cin>>n;
dp[1]=0;//第一层为零,开始站在第一层上
dp[2]=1;
dp[3]=2;
for(int i=4;i<=n;++i)
{
dp[i]=dp[i-1]+dp[i-2];
}
cout<<dp[n]<<endl;
}
}