Gale-Shapley算法又被称为延迟认可算法
解析来自:
代码人生
什么是算法?每当有人问作者这样的问题时,他总会引用这个例子:假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚。如果你已经知道这些女孩儿在每个男孩儿心目中的排名,以及男孩儿们在每个女孩儿心中的排名,你应该怎样为他们牵线配对呢?
最好的配对方案当然是,每个人的另一半正好都是自己的“第一选择”。这虽然很完美,但绝大多数情况下都不可能实现。比方说,男 1 号最喜欢的是女 1 号,而女 1 号的最爱不是男 1 号,这两个人的最佳选择就不可能被同时满足。如果好几个男孩儿最喜欢的都是同一个女孩儿,这几个男孩儿的首选也不会同时得到满足。当这种最为理想的配对方案无法实现时,怎样的配对方案才能令人满意呢?
其实,找的对象太完美不见得是好事儿,和谐才是婚姻的关键。如果男 1 号和女 1 号各有各的对象,但男 1 号觉得,比起自己现在的,女 1 号更好一些;女 1 号也发现,在自己心目中,男 1 号的排名比现男友更靠前。这样一来,这两人就可能抛弃各自现在的对象——如果出现了这种情况,我们就说婚姻搭配是不稳定的。作为一个红娘,你深知,对象介绍得不好没关系,就怕婚姻关系不稳定。给客户牵线配对时,虽然不能让每个人都得到最满意的,但搭配必须得稳定。换句话说,对于每一个人,在他心目中比他当前伴侣更好的异性,都不会认为他也是一个更好的选择。现在,我们的问题是:稳定的婚姻搭配总是存在吗?应该怎样寻找?
一次失败的尝试
为了便于分析,我们下面做一些约定。我们用字母A、B、C对男性进行编号,用数字1、2、3对女性进行编号。我们把所有男性从上到下列在左侧,括号里的数字表示每个人心目中对所有女性的排名;再把所有女性列在右侧,用括号里的字母表示她们对男性的偏好。图 1 所示的就是 2 男 2 女的一种情形,每个男的都更喜欢女 1 号,但女 1 号更喜欢男B,女 2 号更喜欢男A。若按A-1、B-2进行搭配,则男B和女 1 都更喜欢对方一些,这样的婚姻搭配就是不稳定的。但若换一种搭配方案(如图2),这样的搭配就是稳定的了。
图 1 一个不稳定的婚姻搭配图
可能很多人会立即想到一种寻找稳定婚姻搭配的策略:不断修补当前搭配方案。如果两个人互相都觉得对方比自己当前的伴侣更好,就让这两个人成为一对,剩下被甩的那两个人组成一对。
图 2 一个稳定的婚姻搭配
如果还有想要私奔的男女对,就继续按照他们的愿望对换情侣,直到最终消除所有的不稳定组合。容易看出,应用这种“修补策略”所得到的最终结果一定满足稳定性,但这种策略的问题在于,它不一定存在“最终结果”。事实上,按照上述方法反复调整搭配方案,最终可能会陷入一个死循环,因此该策略甚至不能保证得出一个确定的方案来,如图 3 所示。
图 3 应用“修补策略”可能会产生死循环
Gale-Shapley 算法
1962年,美国数学家 David Gale 和 Lloyd Shapley 发明了一种寻找稳定婚姻的策略。不管男女各有多少人,也不管他们的偏好如何,应用这种策略后总能得到一个稳定的搭配。换句话说,他们证明了稳定的婚姻搭配总是存在的。有趣的是,这种策略反映了现实生活中的很多真实情况。
在这种策略中,男孩儿将一轮一轮地去追求他中意的女子,女子可以选择接受或者拒绝他的追求者。第一轮,每个男孩儿都选择自己名单上排在首位的女孩儿,并向她表白。此时,一个女孩儿可能面对的情况有三种:没有人跟她表白,只有一个人跟她表白,有不止一个人跟她表白。在第一种情况下,这个女孩儿什么都不用做,只需要继续等待;在第二种情况下,接受那个人的表白,答应暂时和他做情侣;在第三种情况下,从所有追求者中选择自己最中意的那一位,答应和他暂时做情侣,并拒绝所有其他追求者。
第一轮结束后,有些男孩儿已经有女朋友了,有些男孩儿仍然是单身。在第二轮追女行动中,每个单身男孩儿都从所有还没拒绝过他的女孩儿中选出自己最中意的那一个,并向她表白,不管她现在是否是单身。和第一轮一样,女孩儿们需要从表白者中选择最中意的一位,拒绝其他追求者。注意,如果这个女孩儿已经有男朋友了,当她遇到了更好的追求者时,她必须拒绝掉现在的男友,投向新的追求者的怀抱。这样,一些单身男孩儿将会得到女友,那些已经有了女友的人也可能重新变成光棍。在以后的每一轮中,单身男孩儿继续追求列表中的下一个女孩儿,女孩儿则从包括现男友在内的所有追求者中选择最好的一个,并对其他人说不。这样一轮一轮地进行下去,直到某个时候所有人都不再单身,下一轮将不会有任何新的表白发生,整个过程自动结束。此时的婚姻搭配就一定是稳定的了。
这个策略会不会像之前的修补法一样,出现永远也无法终止的情况呢?不会。下面我们将说明,随着轮数的增加,总有一个时候所有人都能配对。由于在每一轮中,至少会有一个男孩儿向某个女孩儿告白,因此总的告白次数将随着轮数的增加而增加。倘若整个流程一直没有因所有人都配上对了而结束,最终必然会出现某个男孩儿追遍了所有女孩儿的情况。而一个女孩儿只要被人追过一次,以后就不可能再单身了。既然所有女孩儿都被这个男孩儿追过,就说明所有女孩儿现在都不是单身,也就是说此时所有人都已配对。
图 4 应用上述策略,三轮之后将得出稳定的婚姻搭配
接下来,我们还需要证明,这样得出的配对方案确实是稳定的。首先注意到,随着轮数的增加,一个男孩儿追求的对象总是越来越糟,而一个女孩儿的男友只可能变得越来越好。假设男A和女 1 各自有各自的对象,但比起现在的对象,男A更喜欢女1。因此,男A之前肯定已经跟女 1 表白过。既然女 1 最后没有跟男A在一起,说明女 1 拒绝了男A,也就是说她有了比男A更好的男孩儿。这就证明了,两个人虽然不是一对,但都觉得对方比自己现在的伴侣好,这样的情况绝不可能发生。
我们把用来解决某种问题的一个策略,或者说一个方案,或者说一个处理过程,或者说一系列操作规则,或者更贴切地说,一套计算方法,叫做“算法”。上面这个用来寻找稳定婚姻的策略就叫做“Gale-Shapley 算法”,有些人也管它叫“延迟认可算法”。
Gale-Shapley 算法的意义和应用
每个算法都有它的实际意义,能给我们带来很多启发。Gale-Shapley 算法最大的意义就在于,作为一个为这些男女牵线的媒人,你并不需要亲自计算稳定婚姻匹配,甚至根本不需要了解每个人的偏好,只需要按照这个算法组织一个男女配对活动就可以了。你需要做的仅仅是把算法流程当作游戏规则告诉大家,游戏结束后会自动得到一个大家都满意的婚姻匹配。整个算法可以简单地描述为:每个人都去做自己想做的事情。对于男性来说,从最喜欢的女孩儿开始追起是顺理成章的事;对于女性来说,不断选择最好的男孩儿也正好符合她的利益。因此,大家会自动遵守游戏规则,不用担心有人虚报自己的偏好。
历史上,这样的“配对游戏”还真有过实际应用,并且更有意思的是,这个算法的应用居然比算法本身的提出还早 10 年。早在 1952 年,美国就开始用这种办法给医学院的学生安排工作,这被称之为“全国住院医师配对项目”。配对的基本流程就是,各医院从尚未拒绝这一职位的医学院学生中选出最佳人选并发送聘用通知,当学生收到来自各医院的聘用通知后,系统会根据他所填写的意愿表自动将其分配到意愿最高的职位,并拒绝掉其他的职位。如此反复,直到每个学生都分配到了工作。那时人们并不知道这样的流程可以保证工作分配的稳定性,只是凭直觉认为这是很合理的。直到 10 年之后,Gale 和 Shapley 才系统地研究了这个流程,提出了稳定婚姻问题,并证明了这个算法的正确性。
这个算法还有很多有趣的性质。比如说,大家可能会想,这种男追女女拒男的方案对男性更有利还是对女性更有利呢?答案是,这种方案对男性更有利。事实上,稳定婚姻搭配往往不止一种,然而上述算法的结果可以保证,每一位男性得到的伴侣都是所有可能的稳定婚姻搭配方案中最理想的,同时每一位女性得到的伴侣都是所有可能的稳定婚姻搭配方案中最差的。受篇幅限制,我们略去证明的过程。
这个算法会有一些潜在的问题。刚才我们已经说了,对于每位女性来说,得到的结果都是所有可能的稳定搭配中最差的一种。此时,倘若有某位女性知道所有其他人的偏好列表,经过精心计算,她有可能发现,故意拒绝掉本不该拒绝的人(暂时保留一个较差的人在身边),或许有机会等来更好的结果。因而,在实际生活中应用这种算法,不得不考虑一些可能的欺诈与博弈。
这个算法还有一些局限。例如,它无法处理 2n 个人不分男女的稳定搭配问题。一个简单的应用场景便是宿舍分配问题:假设每个宿舍住两个人,已知 2n 个学生中每一个学生对其余 2n-1个学生的偏好评价,如何寻找一个稳定的宿舍分配?此时,Gale-Shapley 算法就不再有用武之地了。而事实上,宿舍分配问题中很可能根本就不存在稳定的搭配。例如,有A、B、C、D四个人,其中A把B排在第一,B把C排在第一,C把A排在第一,而且他们三人都把D排在最后。容易看出,此时一定不存在稳定的宿舍分配方案。倘若A、D同宿舍,B、C同宿舍,那么C会认为A是更好的室友(因为C把A排在了第一),同时A会认为C是更好的室友(因为他把D排在了最后)。同理,B、D同宿舍或者C、D同宿舍也都是不行的,因而稳定的宿舍分配是不存在的。此时,重新定义宿舍分配的优劣性便是一个更为基本的问题。
稳定婚姻问题还有很多其他的变种,有些问题甚至是 NP 完全问题,至今仍然没有(也不大可能有)一种有效的算法。在图论、算法和博弈论中,这都是非常有趣的话题。
题目:This is the link
Description
The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:
- a set M of n males;
- a set F of n females;
- for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).
A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.
Given preferable lists of males and females, you must find the male-optimal stable marriage.
Input
The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.
Output
For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.
Sample Input
2
3
a b c A B C
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
3
a b c A B C
a:ABC
b:ABC
c:BCA
A:bac
B:acb
C:abc
Sample Output
a A
b B
c C
a B
b A
c C
Source
问题分析:直接套用Gale-Shapley算法
This is the code
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include <iomanip>
#include<list>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define EPS 1e-8
#define MOD 1e9+7
#define LL long long
#define ULL unsigned long long //1844674407370955161
#define INT_INF 0x7f7f7f7f //2139062143
#define LL_INF 0x7f7f7f7f7f7f7f7f //9187201950435737471
const int dr[]={0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]={-1, 1, 0, 0, -1, 1, -1, 1};
// ios.sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
#define N 30
int couple; //表示有几对
int male_like[N][N];//男士对女生的喜欢程度,按照降序排列
int female_like[N][N];//女士对男士的喜欢程度,一一对应
int male_choice[N];//男士的选择
int female_choice[N];//女士的选择
int male_name[N];//储存姓名
int female_name[N];
queue<int > free_male ;//表示没有配对的男士
//注意,这里将姓名转化乘数字挤行储存
void Init()//输入处理数据
{
char str[N];//输入处理
scanf("%d",&couple);
//存储男士的姓名,并初始化都没有配对
for(int i=0;i<couple; ++i)
{
scanf("%s",&str);
male_name[i]=str[0]-'a';
free_male.push(male_name[i]);
}
//将名字排序,便于字典顺序输出
sort(male_name,male_name+couple);
//存储女士的姓名
for(int i=0;i<couple; ++i)
{
scanf("%s",&str);
female_name[i]=str[0]-'A';
}
//记录男士对女士的印象,并按照降序排列
for(int i=0;i<couple; ++i)
{
scanf("%s",&str);
for(int j=0;j<couple; ++j)
male_like[i][j]=str[j+2]-'A';
}
//记录女士对男生权值,并添加虚拟初始男友,虚拟男友权值为0
for(int i=0;i<couple; ++i)
{
scanf("%s",&str);
for(int j=0;j<couple; ++j)
female_like[i][str[j+2]-'a']=couple-j;//真实男友的权值最低为 1 >初始的0
female_like[i][couple]=0;//虚拟男友
}
}
void Choice()
{
//初始化男士的期望都是最喜欢的女士
memset(male_choice,0,sizeof(male_choice));
//初始化女士的男友为虚拟男友
for(int i=0;i<couple; ++i)
female_choice[i]=couple;
while(!free_male.empty())
{
//找处为配对的男士
int male=free_male.front();
//找处可以心仪的对象
int female=male_like[male][male_choice[male]];
//如果当前男士没有原来的男友好,则选择新的男友
if(female_like[female][male]>female_like[female][female_choice[female]])
{
//成功脱单
free_male.pop();
//如果有前男友,则将其打回光棍,选择现在的对象
//注意不要把虚拟男友,打成光棍
if(female_choice[female]!=couple)
{
free_male.push(female_choice[female]);
//之前的男友选择其下一个对象
male_choice[female_choice[female]]++;
}
//记录当前女士的男友
female_choice[female]=male;
}
//被拒绝,考虑下一个对象
else
male_choice[male]++;
}
}
void Print()
{
for(int i=0; i<couple; ++i)
{
printf("%c ",male_name[i]+'a');
printf("%c\n",male_like[male_name[i]][male_choice[male_name[i]]]+'A');
}
printf("\n");
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
Init();
Choice();
Print();
}
return 0;
}