Light OJ 1369

题目链接:

http://lightoj.com/volume_showproblem.php?problem=1369

The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:

long long f( int A[]int n ) { // n = size of A

    long long sum = 0;

    for( int i = 0; i < n; i++ )

        for( int j = i + 1; j < n; j++ )

            sum += A[i] - A[j];

    return sum;

}

Given the array A and an integer n, and some queries of the form:

1)      0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.

2)      1, meaning that you have to find f as described above.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and 106 denoting the array A as described above.

Each of the next q lines contains one query as described above.

Output

For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).

Sample Input

Output for Sample Input

1

3 5

1 2 3

1

0 0 3

1

0 2 1

1

Case 1:

-4

0

4

Note

Dataset is huge, use faster I/O methods.

 

思路:把这N个数写到一个N*N的矩阵的对角线上,然后后面的减出来的数就写在后面,类似于下面的图,这样就可以发现,如果你改变某个数的值,例如咱们增加了他的值A,那么影响就是:这一行的每个数都+A,这一列的数都-A,这样就可以了,我们只要统计增加的个数就可以了,不要忘了更新数组

公式:

对于每个a[i]

sum+=(n-i-1)*a[i]-i*a[i];

n-i-1表示行,i表示列

This is the code:

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x7f7f7f7f      //2139062143
#define LL_INF 0x7f7f7f7f7f7f7f7f //9187201950435737471
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int dr[]= {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]= {-1, 1, 0, 0, -1, 1, -1, 1};
int a[1000050];
int main()
{
    int T;
    scanf("%d",&T);
    for(int t=1; t<=T; ++t)
    {
        LL sum=0;
        LL n,k;
        scanf("%lld%lld",&n,&k);
        for(LL i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
            sum+=(n-i-1ll)*a[i]-i*a[i];//计算初始的和
            //n-i-1表示行,i表示列
        }
        printf("Case %d:\n",t);
        int tem;
        while(k--)
        {
            scanf("%d",&tem);
            if(!tem)
            {
                LL x,v;
                scanf("%lld%lld",&x,&v);
                LL y=v-a[x];
                sum+=((n-x-1ll)*y-x*y);
                a[x]=v;//不要忘了更新
            }
            else
                printf("%lld\n",sum);
        }
    }
    return 0;
}

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值