链接:https://ac.nowcoder.com/acm/contest/317/G
来源:牛客网
小a的排列
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld题目描述
小a有一个长度为nn的排列。定义一段区间是"萌"的,当且仅当把区间中各个数排序后相邻元素的差为11
现在他想知道包含数x,yx,y的长度最小的"萌"区间的左右端点也就是说,我们需要找到长度最小的区间[l,r][l,r],满足区间[l,r][l,r]是"萌"的,且同时包含数xx和数yy
如果有多个合法的区间,输出左端点最靠左的方案。
输入描述:
第一行三个整数N,x,yN,x,y,分别表示序列长度,询问的两个数 第二行有nn个整数表示序列内的元素,保证输入为一个排列输出描述:
输出两个整数,表示长度最小"萌"区间的左右端点示例1
输入
5 2 3 5 2 1 3 4输出
2 4说明
区间[2,4]={2,1,3}[2,4]={2,1,3}包含了2,32,3且为“萌”区间,可以证明没有比这更优的方案示例2
输入
8 3 5 6 7 1 8 5 2 4 3输出
5 8备注:
保证2⩽n⩽105,1⩽x,y⩽n
//首先,一个区间[?,?]是连续区间当且仅当???V,W−???V,W=?−? 我们维护出每个数出现的位置,即???;表示数x的位置,考虑每次迭带更新答案。 维护四个变量?,?,??,??分别表示当前区间的左右端点,最大最小值 首先找到[???;,???[]中的每个数位置的最大最小值来找到下一轮的?,? 接下来不断扩充当前的?,?,扩充的同时更新??,??,再不断用新的??,??更新?,?,直到找到一段连 续区间 当找到第一个满足条件的区间即为长度最小的区间,实际上长度最小的区间的左右端点只有一种方案, 因为两段相交的连续区间的交集也是连续区间
This is the code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include <iomanip>
#include<list>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define pppp cout<<endl;//换行
#define PI acos(-1.0)
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long //1844674407370955161
#define INT_INF 0x7f7f7f7f //2139062143
#define LL_INF 0x7f7f7f7f7f7f7f7f //9187201950435737471
const int mod=1e9+7;
const int dr[]= {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]= {-1, 1, 0, 0, -1, 1, -1, 1};
inline int read()//输入外挂
{
int ret=0, flag=0;
char ch;
if((ch=getchar())=='-')
flag=1;
else if(ch>='0'&&ch<='9')
ret = ch - '0';
while((ch=getchar())>='0'&&ch<='9')
ret=ret*10+(ch-'0');
return flag ? -ret : ret;
}
const int Maxn=100005;
int a[Maxn];
int pos[Maxn];
int main()
{
int n=read();
int x=read();
int y=read();
for(int i=1;i<=n;++i)
{
a[i]=read();
pos[a[i]]=i;
}
int L=pos[x];
int R=pos[y];
if(L>R)
swap(L,R);
int maxn=-1,minn=INT_INF;//储存最大值,最小值
int l=L,r=R;//储存范围
for(int i=L;i<=R;++i)//寻找l,r之间的最大值与最小值
{
maxn=max(maxn,a[i]);
minn=min(minn,a[i]);
}
for(int i=minn;i<=maxn;++i)//寻找最大值和最小值包含的数的最左区间和最右区间
{
l=min(l,pos[i]);
r=max(r,pos[i]);
}
while(l<L || R<r)
{
int minnn=minn;
int maxnn=maxn;
while(l<L)//更新最小值和最大值
{
minnn=min(minnn,a[--L]);
maxnn=max(maxnn,a[L]);
}
while(R<r)//更新最小值和最大值
{
minnn=min(minnn,a[++R]);
maxnn=max(maxnn,a[R]);
}
for(int i=minnn;i<=minn;++i)//更新包含最小值和最大值的区间范围
{
l=min(l,pos[i]);
r=max(r,pos[i]);
}
for(int i=maxn;i<=maxnn;++i)//更新包含最小值和最大值的区间范围
{
l=min(l,pos[i]);
r=max(r,pos[i]);
}
minn=minnn;
maxn=maxnn;
}
printf("%d %d\n",l,r);
return 0;
}