Codeforces Round #138 (Div. 1)C. Partial Sums

C. Partial Sums

time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that:

  1. First we build by the array a an array s of partial sums, consisting of n elements. Element number i (1 ≤ i ≤ n) of array s equals . The operation x mod y means that we take the remainder of the division of number x by number y.
  2. Then we write the contents of the array s to the array a. Element number i (1 ≤ i ≤ n) of the array s becomes the i-th element of the array a (ai = si).

You task is to find array a after exactly k described operations are applied.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 2000, 0 ≤ k ≤ 109). The next line contains n space-separated integers a1, a2, ..., an — elements of the array a (0 ≤ ai ≤ 109).

Output

Print n integers  — elements of the array a after the operations are applied to it. Print the elements in the order of increasing of their indexes in the array a. Separate the printed numbers by spaces.

Examples

input

Copy

3 1
1 2 3

output

Copy

1 3 6

input

Copy

5 0
3 14 15 92 6

output

Copy

3 14 15 92 6

题目大意:

    有一个长度为N的数组,每次用它的前缀和数组代替它,求执行K次操作后的数组。

思路:

通过计算前几项,找到规律,上三角矩阵进行k次幂后的第一行就是系数,

解决方法,通过特殊三角矩阵的快速幂求解 或者通过组合数学 C(i + k,i)的规律,计算然后求解

矩阵快速幂解决方法:2402ms

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define pppp cout<<endl;
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x3f3f3f3f      //1061109567
#define LL_INF 0x3f3f3f3f3f3f3f3f //4557430888798830399
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int dr[]={0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]={-1, 1, 0, 0, -1, 1, -1, 1};
int read()//输入外挂
{
    int ret=0, flag=0;
    char ch;
    if((ch=getchar())=='-')
        flag=1;
    else if(ch>='0'&&ch<='9')
        ret = ch - '0';
    while((ch=getchar())>='0'&&ch<='9')
        ret=ret*10+(ch-'0');
    return flag ? -ret : ret;
}
const LL MOD = 1000000007;
const int maxn=2000+3;
int N,K;
LL a[maxn],h[maxn],temp[maxn];
LL b[maxn];//最终存储的结果

void mul(LL *A,LL *B)//矩阵A乘矩阵B,结果储存在A中
{
    memset(temp,0,sizeof(temp));
    for(int i=1; i<=N; ++i)
        for(int j=1; j<=i; ++j)
            temp[i]=(temp[i]+A[j]*B[i-j+1])%MOD;
    for(int i=1; i<=N; ++i)
        A[i]=temp[i];
}

void pow(LL n)//矩阵快速幂,结果储存在b中
{
    for(int i=1; i<=N; ++i) //初始状态矩阵最上层全为1
        h[i]=1;
    memset(b,0,sizeof(b));
    b[1]=1;//单位矩阵第一行,因为只求的第一行,改第一个就行
    while(n>0)
    {
        if(n&1)
            mul(b,h);
        mul(h,h);
        n>>=1;
    }
}
LL num[maxn];
int main()
{

    while(~scanf("%d%d",&N,&K))
    {
        for(int i=1;i<=N;++i)
            scanf("%lld",&num[i]);
        pow(K);
        for(int i=1;i<=N;++i)
        {
            LL tem=0;
            for(int j=1;j<=i;++j)
               tem=(tem+num[j]*b[i-j+1]%MOD)%MOD;
            printf("%lld ",tem);
        }
        printf("\n");
    }
    return 0;
}

 组合数解决方式:186ms

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define pppp cout<<endl;
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x3f3f3f3f      //1061109567
#define LL_INF 0x3f3f3f3f3f3f3f3f //4557430888798830399
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int dr[]= {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]= {-1, 1, 0, 0, -1, 1, -1, 1};
inline int read()//输入外挂
{
    int ret=0, flag=0;
    char ch;
    if((ch=getchar())=='-')
        flag=1;
    else if(ch>='0'&&ch<='9')
        ret = ch - '0';
    while((ch=getchar())>='0'&&ch<='9')
        ret=ret*10+(ch-'0');
    return flag ? -ret : ret;
}
const LL MOD=1000000007;
LL inv[2050];
void init()
{
    inv[1]=1;
    for(int i=2;i<=2050;++i)
        inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
}
LL C(LL n,LL m)
{
    LL res=1;
    for(int i=1;i<=m;++i)
        res=res*inv[i]%MOD*(n-i+1)%MOD;
    return res;
}
LL num[2050];
LL c[2050];
int main()
{
    init();
    LL n,k;
    while(~scanf("%lld%lld",&n,&k))
    {
        for(int i=1;i<=n;++i)
            scanf("%lld",&num[i]);
        for(int i=0;i<=n;++i)
            c[i]=C(k+i-1,i);

        for(int i=1;i<=n;++i)
        {
            LL tem=0;
            for(int j=1;j<=i;++j)
                tem=(tem+num[j]*c[i-j]%MOD)%MOD;
            printf("%lld ",tem);
        }
        printf("\n");
    }
    return 0;
}

 

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值