题目描述
DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包。这些包的容量是相同的,都是 V。
可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值。
在 DD 看来,合理的背包安排方案是这样的:
每个人背包里装的物品的总体积恰等于包的容量。
每个包里的每种物品最多只有一件,但两个不同的包中可以存在相同的物品。
任意两个人,他们包里的物品清单不能完全相同。
在满足以上要求的前提下,所有包里的所有物品的总价值最大是多少呢?
输入格式
第一行有三个整数:K、V、N。(k<=50 v<=5000 n<=200 by RQ)
第二行开始的 N 行,每行有两个整数,分别代表这件物品的体积和价值。
输出格式
只需输出一个整数,即在满足以上要求的前提下所有物品的总价值的最大值。(最后有空行.)
样例输入
2 10 5
3 12
7 20
2 4
5 6
1 1
样例输出
DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包。这些包的容量是相同的,都是 V。
可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值。
在 DD 看来,合理的背包安排方案是这样的:
每个人背包里装的物品的总体积恰等于包的容量。
每个包里的每种物品最多只有一件,但两个不同的包中可以存在相同的物品。
任意两个人,他们包里的物品清单不能完全相同。
在满足以上要求的前提下,所有包里的所有物品的总价值最大是多少呢?
输入格式
第一行有三个整数:K、V、N。(k<=50 v<=5000 n<=200 by RQ)
第二行开始的 N 行,每行有两个整数,分别代表这件物品的体积和价值。
输出格式
只需输出一个整数,即在满足以上要求的前提下所有物品的总价值的最大值。(最后有空行.)
样例输入
2 10 5
3 12
7 20
2 4
5 6
1 1
样例输出
57
思路:
这道题目是在01背包的基础上求出前K个最优解。
dp[i][j]: 背包容量为i,第j优解的值。
由于任意两个背包不能完全相同,所以只初始化dp[0][1]=0;
因为要求必须恰好装满,所以其他的初始化为最小。
dp[i][1....k]=max(dp[i][1..k],dp[i-w][1...k]+v);
即dp[i][1....k]中的k个元素为dp[i][1..k]中的k个元素+dp[i-w][1...k]中的k个元素的前k大的元素。
合并两个数组的时候利用归并排序的原理合并。
#include <stdio.h>
int f[5001][51];
int main()
{
int k, v, n, a, b;
int i, j, u, t[51], p1, p2, ans;
scanf("%d%d%d", &k, &v, &n);
for(i = 0; i < v; ++i)
for(j = 0; j <= k; ++j)
f[i][j] = -99999999;
f[0][1] = 0;
for(i = 1; i <= n; ++i)
{
scanf("%d%d", &a, &b);
for(j = v; j >= a; --j)
if(f[j-a][1] >= 0)
{
p1 = 1, p2 = 1;
for(u = 1; u <= k; ++u)
{
t[u] = f[j][u];
if(f[j-a][p2] + b > t[p1])
f[j][u] = f[j-a][p2++] + b;
else
f[j][u] = t[p1++];
}
}
}
ans = 0;
for(i = 1; i <= k; ++i)
ans += f[v][i];
printf("%d\n", ans);
return 0;
}