【BZOJ1096】球形空间产生器

球面中心计算题解
本文介绍了一种通过建立方程组求解球心坐标的方法。利用各点到球心等距特性,通过高斯消元法求得球心坐标的具体实现。适用于需要计算多维空间中球面中心的问题。

题解:
设球心为(x1,x2,,xn),按照每个点到球心距离相等列出方程组,直接求解即可

//by sdfzchy
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int inf=(1<<30);
const double eps=1e-12;
int n,m;
double f[110][110],ans[110];
inline int in()
{
    char ch=getchar();
    int f=1,tmp=0;
    while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {tmp=(tmp<<1)+(tmp<<3)+(ch-'0');ch=getchar();}
    return tmp*f;
}
inline int gi(double x)
{
    if(x>=-eps&&x<=eps) return 0;
    return x>0?1:-1;
}
double a[110][110];

bool gauss()
{
    for(int i=1;i<=n;i++)
    {
        int num=i;
        for(int j=i+1;j<=n;j++)
            if(gi(fabs(f[j][i])-fabs(f[num][i])))
                num=i;
        if(num!=i)
            for(int j=1;j<=n+1;j++)
                swap(f[num][j],f[i][j]);
        for(int j=i+1;j<=n;j++)
        if(gi(f[i][i]))
        {
            double t=f[j][i]/f[i][i];
            for(int k=i;k<=n+1;k++) f[j][k]-=f[i][k]*t;
        }
    }
    for(int i=n;i>=1;i--)
    {
        if(gi(f[i][i])==0) return 0;
        for(int j=i+1;j<=n;j++) f[i][n+1]-=f[i][j]*ans[j];
        ans[i]=f[i][n+1]/f[i][i];
    }
    return 1;
}

int main()
{
    n=in();
    for(int i=1;i<=n+1;i++)
        for(int j=1;j<=n;j++)
        {
            scanf("%lf",&a[i][j]);
            if(i>1)
            {
                f[i-1][j]=(a[i][j]-a[i-1][j])*2.0;
                f[i-1][n+1]+=a[i][j]*a[i][j]-a[i-1][j]*a[i-1][j];
            }
        }
    gauss();
    for(int i=1;i<n;i++) printf("%.3lf ",ans[i]);
    printf("%.3lf",ans[n]);
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值