bzoj3343 教主的魔法

Description
教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L,
R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。 Input
第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作: (1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。 (2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R]
内有多少英雄的身高大于等于C。 Output
对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。

将区间分为sqrt(n)块,每一块内部从小到大排序。修改的时候对于整块打标记,对于不在整块内的暴力修改重排【注意修改要在原数组上进行】。询问的时候对于整块的二分,不在整块内的暴力。
时间复杂度O(m* sqrt(n)* logn)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int rd()
{
    int x=0;
    char c=getchar();
    while (c<'0'||c>'9') c=getchar();
    while (c>='0'&&c<='9')
    {
        x=x*10+c-'0';
        c=getchar();
    }
    return x;
}
int a[1000010],b[1000010],L[1010],R[1010],mk[1010],n,m,T;
void init()
{
    int i;
    scanf("%d%d",&n,&m);
    for (i=1;i<=n;i++)
      scanf("%d",&a[i]);
    T=sqrt(n);
    for (i=1;i<=T;i++)
    {
        L[i]=R[i-1]+1;
        R[i]=i==T?n:L[i]+T-1;
    }
    for (i=1;i<=n;i++)
      b[i]=a[i];
    for (i=1;i<=T;i++)
      sort(b+L[i],b+R[i]+1);
}
void modi(int l,int r,int x)
{
    int i,j;
    for (i=1;i<=T;i++)
    {
        if (L[i]>=l&&R[i]<=r) mk[i]+=x;
        else
        {
            if ((L[i]<l&&l<=R[i])||(L[i]<=r&&r<R[i]))
            {
                for (j=L[i];j<=R[i];j++)
                  a[j]+=mk[i];
                mk[i]=0;
                for (j=max(l,L[i]);j<=R[i]&&j<=r;j++)
                  a[j]+=x;
                for (j=L[i];j<=R[i];j++)
                  b[j]=a[j];
                sort(b+L[i],b+R[i]+1);
            }
        }
    }
}
int qry(int l,int r,int x)
{
    int i,j,ans=0,ll,rr,mid;
    for (i=1;i<=T;i++)
    {
        if (L[i]>=l&&R[i]<=r)
        {
            ll=L[i]-1;
            rr=R[i];
            while (ll<rr)
            {
                mid=(ll+rr+1)/2;
                if (b[mid]+mk[i]<x) ll=mid;
                else rr=mid-1;
            }
            ans+=R[i]-ll;
        }
        else
        {
            if ((L[i]<l&&l<=R[i])||(L[i]<=r&&r<R[i]))
            {
                for (j=max(l,L[i]);j<=R[i]&&j<=r;j++)
                  if (b[j]+mk[i]>=x) ans++;
            }
        }
    }
    return ans;
}
int main()
{
    int i,j,k,p,q,x,y,z;
    char c[5];
    init();
    while (m--)
    {
        scanf("%s%d%d%d",c,&x,&y,&z);
        if (c[0]=='M')
          modi(x,y,z);
        else
          printf("%d\n",qry(x,y,z));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值