Description
有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆。这座博物馆有着特别的样式。它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间。
两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品。他们约定在下午六点到一间房间会合。然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面。等时间到六点,他们开始在博物馆里到处乱跑来找到对方(他们没法给对方打电话因为电话漫游费是很贵的)
不过,尽管他们到处乱跑,但他们还没有看完足够的艺术品,因此他们每个人采取如下的行动方法:每一分钟做决定往哪里走,有Pi
的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi
的概率他会在相邻的房间中等可能的选择一间并沿着走廊过去。这里的i指的是当期所在房间的序号。在古代建造是一件花费非常大的事,因此每条走廊会连接两个不同的房间,并且任意两个房间至多被一条走廊连接。
两个男孩同时行动。由于走廊很暗,两人不可能在走廊碰面,不过他们可以从走廊的两个方向通行。(此外,两个男孩可以同时地穿过同一条走廊却不会相遇)两个男孩按照上述方法行动直到他们碰面为止。更进一步地说,当两个人在某个时刻选择前往同一间房间,那么他们就会在那个房间相遇。
两个男孩现在分别处在a,b两个房间,求两人在每间房间相遇的概率。 Input 第一行包含四个整数,n表示房间的个数;m表示走廊的数目;a,b
(1 ≤ a, b ≤ n),表示两个男孩的初始位置。 之后m行每行包含两个整数,表示走廊所连接的两个房间。
之后n行每行一个至多精确到小数点后四位的实数 表示待在每间房间的概率。 题目保证每个房间都可以由其他任何房间通过走廊走到。 Output
输出一行包含n个由空格分隔的数字,注意最后一个数字后也有空格,第i个数字代表两个人在第i间房间碰面的概率(输出保留6位小数)
注意最后一个数字后面也有一个空格
首先把“
A
在点
答案向量
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=1e-9;
double a[410][410],f[410][410],p[25];
int fir[25],ne[410],to[410],du[25],
n,m,uu,vv;
int cmp(double x)
{
if (x>eps) return 1;
if (fabs(x)<eps) return 0;
return -1;
}
int id(int x,int y)
{
return (x-1)*n+y;
}
void add(int num,int u,int v)
{
ne[num]=fir[u];
fir[u]=num;
to[num]=v;
}
int main()
{
int u,v;
double tem;
scanf("%d%d%d%d",&n,&m,&uu,&vv);
for (int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
du[u]++;
du[v]++;
add(i<<1,u,v);
add(i<<1|1,v,u);
}
for (int i=1;i<=n;i++) scanf("%lf",&p[i]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (i!=j)
{
u=id(i,j);
a[u][u]=-p[i]*p[j];
for (int x=fir[i];x;x=ne[x])
a[u][id(to[x],j)]=-(1-p[i])/du[i]*p[j];
for (int y=fir[j];y;y=ne[y])
a[u][id(i,to[y])]=-p[i]*(1-p[j])/du[j];
for (int x=fir[i];x;x=ne[x])
for (int y=fir[j];y;y=ne[y])
a[u][id(to[x],to[y])]=-(1-p[i])/du[i]*(1-p[j])/du[j];
}
for (int i=1;i<=n*n;i++) a[i][i]+=1,f[i][i]=1;
for (int i=1;i<=n*n;i++)
{
u=-1;
for (int j=i;j<=n*n;j++)
if (cmp(a[j][i]))
{
u=j;
break;
}
if (u==-1) continue;
if (u!=i)
for (int j=1;j<=n*n;j++)
{
swap(a[i][j],a[u][j]);
swap(f[i][j],f[u][j]);
}
tem=a[i][i];
for (int j=1;j<=n*n;j++)
{
a[i][j]/=tem;
f[i][j]/=tem;
}
for (int j=1;j<=n*n;j++)
if (j!=i)
{
tem=a[j][i];
for (int k=1;k<=n*n;k++)
{
a[j][k]-=a[i][k]*tem;
f[j][k]-=f[i][k]*tem;
}
}
}
for (int i=1;i<=n;i++)
printf("%.6f ",f[id(uu,vv)][id(i,i)]);
}