bzoj3512 DZY Loves Math IV

229 篇文章 0 订阅

因为 n 比较小,m比较大,我们枚举 n ,计算

s(n,m)=i=1mφ(ni)

首先把 n 的所有完全平方因子提出来,也就是使得|μ(n)|=1。接下来任取 n 的一个质因子p,可以发现当 i|p φ(ni)=pφ(nip) ,否则 φ(ni)=(p1)φ(nip) 。因此

s(n,m)=(p1)s(np,m)+s(n,mp)

m=1 时,答案就是 φ(n) 。当 n=1 时,用杜教筛求解。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn=1000000,p=1000000007;
int dv[maxn+10],phi[maxn+10],sphi[maxn+10],prm[maxn+10],vis[maxn+10],
tot;
inline int inc(int x,int y)
{
    x+=y;
    return x>=p?x-p:x;
}
inline int dec(int x,int y)
{
    x-=y;
    return x<0?x+p:x;
}
struct one_hash
{
    int fir[maxn+10],ne[maxn+10],val[maxn+10],ans[maxn+10],tot,p;
    void init()
    {
        p=1000007;
    }
    inline int find(int n)
    {
        for (int i=fir[n%p];i;i=ne[i])
            if (val[i]==n) return ans[i];
        return -1;
    }
    inline void ins(int n,int x)
    {
        if (tot>maxn+5) return;
        int y=n%p;
        tot++;
        ne[tot]=fir[y];
        fir[y]=tot;
        val[tot]=n;
        ans[tot]=x;
    }
}h1;
void init()
{
    phi[1]=sphi[1]=1;
    for (int i=2;i<=maxn;i++)
    {
        if (!dv[i])
        {
            phi[i]=i-1;
            prm[++tot]=i;
            dv[i]=i;
        }
        for (int j=1;j<=tot&&(LL)i*prm[j]<=maxn;j++)
            if (i%prm[j])
            {
                dv[i*prm[j]]=prm[j];
                phi[i*prm[j]]=phi[i]*(prm[j]-1);
            }
            else
            {
                dv[i*prm[j]]=dv[i]*prm[j];
                phi[i*prm[j]]=phi[i]*prm[j];
                break;
            }
        sphi[i]=inc(sphi[i-1],phi[i]);
    }
    h1.init();
}
inline int sum(int n)
{
    if (n<=maxn) return sphi[n];
    int ret=h1.find(n);
    if (ret!=-1) return ret;
    ret=(LL)n*(n+1)/2%p;
    for (int i=2,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        ret=dec(ret,(LL)(j-i+1)*sum(n/i)%p);
    }
    h1.ins(n,ret);
    return ret;
}
int get(int n)
{
    int m=sqrt(n+0.5),ret=1;
    for (int i=1;i<=tot&&prm[i]<=m;i++)
        if (n%prm[i]==0)
        {
            ret*=prm[i];
            while (n%prm[i]==0) n/=prm[i];
        }
    if (n>1) ret*=n;
    return ret;
}
inline int solve(int n,int m)
{
    if (n==1) return sum(m);
    if (m==1) return phi[n];
    if (n==0||m==0) return 0;
    return inc((LL)(dv[n]-1)*solve(n/dv[n],m)%p,solve(n,m/dv[n]));
}
int main()
{
    int n,m,x,ans=0;
    init();
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) vis[i]=-1;
    for (int i=1;i<=n;i++)
    {
        x=get(i);
        if (vis[x]==-1) vis[x]=solve(x,m);
        ans=inc(ans,(LL)i/x*vis[x]%p);
    }
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值