自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(264)
  • 资源 (162)
  • 收藏
  • 关注

原创 R语言读取(加载)txt格式数据为dataframe、为dataframe中的两个离散变量构建列联表

R语言读取(加载)txt格式数据为dataframe、为dataframe中的两个离散变量构建列联表

2022-07-21 07:44:04 478

原创 R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)

R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)

2022-07-21 07:43:52 1869

原创 R语言读取(加载)txt格式数据为dataframe、查询dataframe中存在缺失值的行

R语言读取(加载)txt格式数据为dataframe、查询dataframe中存在缺失值的行

2022-07-20 07:31:40 736

原创 R语言使用is.numeric函数判断数据对象是否是数值型

R语言使用is.numeric函数判断数据对象是否是数值型

2022-07-20 07:31:22 1177

原创 R语言将dataframe中的多个数据列相加形成新的向量、并将生成的向量并入dataframe中

R语言将dataframe中的多个数据列相加形成新的向量、并将生成的向量并入dataframe中

2022-07-20 07:30:57 1422

原创 R语言读取(加载)txt格式数据为dataframe、按照指定字段(数据列)对dataframe进行升序排序(ascending、首先计算位置向量)

R语言读取(加载)txt格式数据为dataframe、按照指定字段(数据列)对dataframe进行升序排序(ascending、首先计算位置向量)

2022-07-16 09:38:33 395

原创 R语言使用diag函数生成一个N行N列的单位矩阵

R语言使用diag函数生成一个N行N列的单位矩阵

2022-07-16 09:38:16 2849

原创 R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中所有数据列的加和(sum)、指定na.rm为TRUE

R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中所有数据列的加和(sum)、指定na.rm为TRUE

2022-07-16 09:38:02 287

原创 R语言读取(加载)txt格式数据为dataframe、基于dataframe中的两个字段(数据列)可视化散点图、拟合简单线性回归模型

R语言读取(加载)txt格式数据为dataframe、基于dataframe中的两个字段(数据列)可视化散点图、拟合简单线性回归模型

2022-07-15 10:09:35 157

原创 R语言使用单个向量创建矩阵数据、通过nrow函数指定行数、通过ncol函数指定列数

R语言使用单个向量创建矩阵数据、通过nrow函数指定行数、通过ncol函数指定列数

2022-07-15 10:08:23 2320

原创 R语言使用cbind函数将多个向量数据纵向合并起来形成矩阵的数据列、使用指定的行数据范围和列数据范围索引矩阵数据

R语言使用cbind函数将多个向量数据纵向合并起来形成矩阵的数据列、使用指定的行数据范围和列数据范围索引矩阵数据

2022-07-15 10:08:07 988

原创 R语言使用sum函数计算向量数据的加和

R语言使用sum函数计算向量数据的加和

2022-07-15 10:07:50 2906

原创 R语言读取(加载)txt格式数据为dataframe、查看dataframe中所有字段的基本描述统计量

R语言读取(加载)txt格式数据为dataframe、查看dataframe中所有字段的基本描述统计量

2022-07-15 10:07:28 367

原创 R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中指定离散变量(因子变量)每个类别(水平)的个数及其占整体的比例、使用饼图进行可视化

R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中指定离散变量(因子变量)每个类别(水平)的个数及其占整体的比例、使用饼图进行可视化

2022-07-15 10:07:12 107

原创 R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、可视化为百分比直方图而非频率直方图

R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、可视化为百分比直方图而非频率直方图

2022-07-08 17:28:07 284

原创 R语言读取(加载)txt格式数据为dataframe、基于性别字段(数据列)抽取dataframe数据的数据子集、计算所有男生各科成绩的平均值

R语言读取(加载)txt格式数据为dataframe、基于性别字段(数据列)抽取dataframe数据的数据子集、计算所有男生各科成绩的平均值

2022-07-08 17:14:46 262

原创 R语言使用多个数据类型不同的向量数据创建一个dataframe数据对象、使用[]操作符和列索引数值访问dataframe指定数据列的数据(column index)

R语言使用多个数据类型不同的向量数据创建一个dataframe数据对象、使用[]操作符和列索引数值访问dataframe指定数据列的数据(column index)

2022-07-08 17:14:24 164

原创 R语言使用sqrt函数计算平方根、开平方根

R语言使用sqrt函数计算平方根、开平方根

2022-07-08 17:14:04 8118

原创 R语言读取(加载)txt格式数据为dataframe、将dataframe中的指定数值数据列划分为为N个等级的分类(因子)变量、将非正常的标记为缺失值

R语言读取(加载)txt格式数据为dataframe、将dataframe中的指定数值数据列划分为为N个等级的分类(因子)变量、将非正常的标记为缺失值

2022-07-08 17:13:42 252

原创 R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中多个数据列的相关性矩阵

R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中多个数据列的相关性矩阵

2022-07-08 17:13:18 553

原创 R语言使用attach函数绑定dataframe数据(可以直接使用列名称访问数据)

R语言使用attach函数绑定dataframe数据(可以直接使用列名称访问数据)

2022-07-02 10:15:56 1197

原创 R语言使用strsplit函数基于指定字符或者字符串分割字符串、使用sub函数进行字符串替换

R语言使用strsplit函数基于指定字符或者字符串分割字符串、使用sub函数进行字符串替换

2022-07-02 10:15:42 398

原创 R语言使用for循环依次打印50以内的6的倍数

R语言使用for循环依次打印50以内的6的倍数

2022-07-02 10:15:32 376

原创 R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、为直方图添加标题

R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、为直方图添加标题

2022-07-02 10:15:20 343

原创 R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中指定离散变量(因子变量)每个类别(水平)的个数并绘制条形图、自定义Y轴文本标签内容

R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中指定离散变量(因子变量)每个类别(水平)的个数并绘制条形图、自定义Y轴文本标签内容

2022-07-02 10:15:07 159

原创 R语言使用matrix函数创建空矩阵、使用nrow参数和ncol参数指定矩阵的行列数、使用rownames函数为矩阵的数据行指定行名称

R语言使用matrix函数创建空矩阵、使用nrow参数和ncol参数指定矩阵的行列数、使用rownames函数为矩阵的数据行指定行名称

2022-06-30 21:50:23 1688

原创 R语言使用多个数据类型不同的向量数据创建一个dataframe数据对象、使用is.data.frame函数查看数据对象是否是dataframe数据

R语言使用多个数据类型不同的向量数据创建一个dataframe数据对象、使用is.data.frame函数查看数据对象是否是dataframe数据

2022-06-30 21:50:11 209

原创 R语言读取(加载)txt格式数据为dataframe、按照指定字段(数据列)对dataframe进行降序排序、返回行索引的位置向量

R语言读取(加载)txt格式数据为dataframe、按照指定字段(数据列)对dataframe进行降序排序、返回行索引的位置向量

2022-06-30 21:49:56 106

原创 R语言使用median函数计算向量数据的中位数

R语言使用median函数计算向量数据的中位数

2022-06-30 21:49:43 498

原创 R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)、计算矩阵数据的特征值(eigenvalue)

R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)、计算矩阵数据的特征值(eigenvalue)

2022-06-30 21:49:29 386

原创 R语言读取(加载)txt格式数据为dataframe、随机从dataframe抽取N条样本数据(replace为FALSE无放回抽样)

R语言读取(加载)txt格式数据为dataframe、随机从dataframe抽取N条样本数据(replace为FALSE无放回抽样)

2022-06-30 21:49:18 384

原创 R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中所有数据列的标准差

R语言读取(加载)txt格式数据为dataframe、计算dataframe数据中所有数据列的标准差

2022-06-30 21:49:03 363

原创 R语言读取(加载)txt格式数据为dataframe、基于性别字段(数据列)抽取dataframe数据的数据子集、计算女生各科成绩的平均值

R语言读取(加载)txt格式数据为dataframe、基于性别字段(数据列)抽取dataframe数据的数据子集、计算女生各科成绩的平均值

2022-06-30 21:48:51 298

原创 R语言读取(加载)txt格式数据为dataframe、为dataframe中的指定字段(数据列)绘制茎叶图

R语言读取(加载)txt格式数据为dataframe、为dataframe中的指定字段(数据列)绘制茎叶图

2022-06-30 21:48:39 197

原创 R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、自定义直方图Y轴数值标签的上限和下限

R语言读取(加载)txt格式数据为dataframe、可视化绘制温度直方图、自定义直方图Y轴数值标签的上限和下限

2022-06-30 21:48:27 181

原创 R语言使用cumsum函数计算向量数据的累加和(cumulative sum )

R语言使用cumsum函数计算向量数据的累加和(cumulative sum )

2022-06-20 14:17:13 3517

原创 R语言使用is.na函数计算dataframe数据中指定数据列包含缺失值的行索引值、使用!符号获取不包含缺失值的行索引

R语言使用is.na函数计算dataframe数据中指定数据列包含缺失值的行索引值、使用!符号获取不包含缺失值的行索引

2022-06-20 14:16:58 275

原创 R语言将两个矩阵数据进行相乘

R语言将两个矩阵数据进行相乘

2022-06-20 14:16:43 3709

原创 R语言读取(加载)txt格式数据为dataframe、按照指定字段将两个dataframe数据连接起来(类似于SQL连接)

R语言读取(加载)txt格式数据为dataframe、按照指定字段将两个dataframe数据连接起来(类似于SQL连接)

2022-06-20 14:16:24 278

原创 R语言使用dataframe中的多个数据列相加形成新的向量、将向量数据除以一个固定值

R语言使用dataframe中的多个数据列相加形成新的向量、将向量数据除以一个固定值

2022-06-20 14:16:10 595

carpet_prefs.sav

carpet_prefs.sav 该数据文件所基于的示例和在 carpet.sav 中所描述的一样,但它还包含从 10 位消费者的每一位中收集到的实际排列顺序。消费者被要求按照从最喜欢到最不喜欢的顺序对 22 个产品概要文件进行排序。carpet_plan.sav 中定义了变量 PREF1 到 PREF22 包含相关特征的标识。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

carpet_plan.sav

统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

carpet.sav 数据集

carpet.sav 在常用示例5中,有一家公司想要销售一种新型的地毯清洁用品。该公司希望调查以下会对消费者偏好产生影响的五个因素:包装设计、品牌名称、价格、优质家用品标志、以及退货保证。包装设计有三个因子级别,每个因子级别因刷体位置而不同;有三个品牌名称(K2R、Glory 和 Bissell);有三个价格水平;最后两个因素各有两个级别(有或无)。十名消费者对这些因素所定义的 22 个特征进行了排序。变量优选包含对每个概要文件的平均等级的排序。低等级与高偏好相对应。此变量反映了对每个概要文件的偏好的总体度量。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

car_sales_unprepared.sav

car_sales_unprepared.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

car_sales.sav 该数据文件包含假设销售估计值、订价以及各种品牌和型号的车辆的物理规格。

car_sales.sav 该数据文件包含假设销售估计值、订价以及各种品牌和型号的车辆的物理规格。订价和物理规格可以从 edmunds.com 和制造商处获得。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

car_insurance_claims.sav 在别处被提出和分析的4关于汽车损坏赔偿的数据集。

car_insurance_claims.sav 在别处被提出和分析的4关于汽车损坏赔偿的数据集。平均理赔金额可以当作其具有伽玛分布来建模,通过使用逆关联函数将因变量的平均值与投保者年龄、车辆类型和车龄的线性组合关联。提出理赔的数量可以作为刻度权重。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

Canonical correlation.sps

Canonical correlation.sps 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

callwait.sav

callwait.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

broadband_models.xml

broadband_models.xml 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

broadband_2.sav

broadband_1.sav 该假设数据文件包含各地区订制了全国宽带服务的客户的数量。该数据文件包含 4 年期间 85 个地区每月的订户数量。 broadband_2.sav 该数据文件和 broadband_1.sav 一样,但包含另外三个月的数据。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

broadband_1.sav 该假设数据文件包含各地区订制了全国宽带服务的客户的数量。

broadband_1.sav 该假设数据文件包含各地区订制了全国宽带服务的客户的数量。该数据文件包含 4 年期间 85 个地区每月的订户数量。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

Breast cancer survival.sav

Breast cancer survival.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

breakfast-overall.sav 该数据文件只包含早餐食品喜好的第一种情况,即“全部喜欢”。

breakfast-overall.sav 该数据文件只包含早餐食品喜好的第一种情况,即“全部喜欢”。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

breakfast.sav

breakfast.sav 在一项经典研究中3,21 名 Wharton School MBA 学生及其配偶被要求按照喜好程度顺序对 15 种早餐食品进行评价,从 1 =他们的喜好根据六种不同的情况加以记录,从“全部喜欢”到“只带饮料的快餐”。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

brakes.sav 该假设数据文件涉及某生产高性能汽车盘式制动器的工厂的质量控制。

brakes.sav 该假设数据文件涉及某生产高性能汽车盘式制动器的工厂的质量控制。该数据文件包含对 8 台专用机床中每一台的 16 个盘式制动器的直径测量。盘式制动器的目标直径为 322 毫米。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

behavior_ini.sav

behavior_ini.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

behavior.sav

behavior.sav 在一个经典示例中2,52 名学生被要求以 10 点的标度对 15 种情况和 15 种行为的组合进行评价,该 10 点的标度从 0 = “极得体”到 9 = “极不得体”。平均值在个人值之上,值被视为相异性。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan_recoded.sav

bankloan_recoded.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan_cs_noweights.sav

bankloan_cs_noweights.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan_cs.sav

bankloan_cs.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan_binning.sav 该假设数据文件包含 5,000 位过去客户的财务和人口统计信息。

bankloan_binning.sav 该假设数据文件包含 5,000 位过去客户的财务和人口统计信息。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan.sav 该假设数据文件涉及某银行在降低贷款拖欠率方面的举措。

bankloan.sav 该假设数据文件涉及某银行在降低贷款拖欠率方面的举措。该文件包含 850 位过去和潜在客户的财务和人口统计信息。前 700 个个案是以前曾获得贷款的客户。剩下的 150 个个案是潜在客户,银行需要按高或低信用风险对他们进行分类。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

bankloan.csaplan

bankloan.csaplan 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

band.sav 数据集

band.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

automaton.sps

automaton.sps 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

autoaccidents.sav

autoaccidents.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

Anxiety2.sav

Anxiety2.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

Anxiety.sav

Anxiety.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

anorectic.sav 在研究厌食/暴食行为的标准症状参照时,研究人员1对 55 名已知存在进食障碍的青少年进行了调查。

anorectic.sav 在研究厌食/暴食行为的标准症状参照时,研究人员1对 55 名已知存在进食障碍的青少年进行了调查。其中每名患者每年都将进行四次检查,因此总观测数为 220。在每次观测期间,将对这些患者按 16 种症状逐项评分。但 71 号和 76 号患者的症状得分均在时间点 2 缺失,47 号患者的症状得分在时间点 3 缺失,因此有效观测数为 217。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

AML survival.sav

AML survival.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

aflatoxin20.sav

该假设数据文件涉及对谷物的黄曲霉毒素的检测,该毒素的浓度会因谷物产量的不同(不同谷物之间及同种谷物之间)而有较大变化。谷物加工机从 8 个谷物产量的每一个中收到 16 个样本并以十亿分之几 (PPB) 为单位来测量黄曲霉毒素的水平。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

aflatoxin.sav 该假设数据文件涉及对谷物的黄曲霉毒素的检测,该毒素的浓度会因谷物产量的不同而有较大变化。

aflatoxin.sav 该假设数据文件涉及对谷物的黄曲霉毒素的检测,该毒素的浓度会因谷物产量的不同(不同谷物之间及同种谷物之间)而有较大变化。谷物加工机从 8 个谷物产量的每一个中收到 16 个样本并以十亿分之几 (PPB) 为单位来测量黄曲霉毒素的水平。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

advert.sav 该假设数据文件涉及某零售商在检查广告支出与销售业绩之间的关系方面的举措。

advert.sav 该假设数据文件涉及某零售商在检查广告支出与销售业绩之间的关系方面的举措。为此,他们收集了过去的销售数字以及相关的广告成本。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

adratings.sav

adratings.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

adl.sav 该假设数据文件涉及在确定针对脑卒中患者的建议治疗类型的优点方面的举措。

adl.sav 该假设数据文件涉及在确定针对脑卒中患者的建议治疗类型的优点方面的举措。医师将女性脑卒中患者随机分配到两组中的一组。第一组患者接受标准的物理治疗,而第二组患者则接受附加的情绪治疗。在进行治疗的三个月时间里,将为每个患者进行一般日常生活行为的能力评分并作为原始变量。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

accidents.sav 该假设数据文件涉及某保险公司,该公司正在研究给定区域内汽车事故的年龄和性别风险因子。

accidents.sav 该假设数据文件涉及某保险公司,该公司正在研究给定区域内汽车事故的年龄和性别风险因子。每个个案对应一个年龄类别和性别类别的交叉分类。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-05-01

数据分析常用数据集:abiraterone.xlsx

数据分析常用数据集:abiraterone.xlsx 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-04-11

数据分析常用数据集:abiraterone.csv

数据分析常用数据集:abiraterone.csv 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-04-11

数据分析常用数据集:matchdata.dta

数据分析常用数据集:matchdata.dta 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-04-11

数据分析常用数据集:stu1matchdata.dta

数据分析常用数据集:stu1matchdata.dta 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;

2022-04-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除