为什么除以n-1而不是n得到的样本方差是总体方差的无偏估计量

前言

在统计学中,我们通常使用样本方差来估计总体方差。样本方差的计算通常是将每个观测值与样本均值的差的平方和除以样本大小减去1,即 ( 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ) (\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 ) (n11i=1n(xixˉ)2),而不是简单地除以样本大小 ( n ) ( n ) (n)

这种选择的原因是为了使样本方差成为总体方差的无偏估计量。换句话说,通过使用 ( n − 1 ) ( n-1 ) (n1) 而不是 ( n ) ( n ) (n) 作为除数,我们能够更好地估计总体方差,尤其是在处理小样本时更为重要。

具体的解释:

  • 无偏性: 当我们使用 ( 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ) ( \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 ) (n11i=1n(xixˉ)2) 计算样本方差时,它是总体方差 ( σ 2 ) ( \sigma^2 ) (σ2) 的无偏估计量,即其期望值等于总体方差 ( σ 2 ) ( \sigma^2 ) (σ2)。这意味着,如果我们反复从总体中抽取样本并计算样本方差,这个估计量的平均值会等于真实的总体方差。

  • 修正因子: 使用 ( n − 1 ) ( n-1 ) (n1) 而不是 ( n ) ( n ) (n) 作为除数,实际上是在修正样本均值 ( x ˉ ) ( \bar{x} ) (xˉ) 对总体均值 ( μ ) ( \mu ) (μ) 的估计误差。当样本大小 ( n ) ( n ) (n) 较大时, ( n − 1 ) ( n-1 ) (n1) ( n ) ( n ) (n) 的区别并不显著,但在样本较小时, ( n − 1 ) ( n-1 ) (n1) 能够更准确地反映总体方差的估计。

  • 数学推导: 可以通过数学推导证明,使用 ( n − 1 ) ( n-1 ) (n1) 而不是 ( n ) ( n ) (n) 作为除数可以使样本方差的期望值等于总体方差 ( σ 2 ) ( \sigma^2 ) (σ2)。这是通过考虑自由度 ( n − 1 ) ( n-1 ) (n1) 来调整样本方差的估计所得。

因此,通过使用 ( 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ) ( \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 ) (n11i=1n(xixˉ)2) 计算样本方差,我们能够得到总体方差的无偏估计,这在统计学中是非常重要的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值