[Usaco2011 Jan]道路和航线

24 篇文章 0 订阅
本文介绍了一个结合SPFA和Dijkstra算法解决带有特殊条件的最短路径问题的方法。该问题涉及在一个混合了道路与航线的网络中寻找从特定起点到所有城镇的最便宜路径。文中详细解释了如何通过缩点、拓扑排序等技巧来优化算法效率。
摘要由CSDN通过智能技术生成

Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T。这些城镇之间通过R条道路 (1 <= R <= 50,000,编号为1到R) 和P条航线 (1 <= P <= 50,000,编号为1到P) 连接。每条道路i或者航线i连接城镇A_i (1 <= A_i <= T)到B_i (1 <= B_i <= T),花费为C_i。对于道路,0 <= C_i <= 10,000;然而航线的花费很神奇,花费C_i可能是负数(-10,000 <= C_i <= 10,000)。道路是双向的,可以从A_i到B_i,也可以从B_i到A_i,花费都是C_i。然而航线与之不同,只可以从A_i到B_i。事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台 了一些政策保证:如果有一条航线可以从A_i到B_i,那么保证不可能通过一些道路和航线从B_i回到A_i。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇S(1 <= S <= T) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。



这题又是比较贱的卡了SPFA。。

改DIJ后你就会发现。。 dij不能写有负边得题啊。

不过题目中有个重要的条件

如果有一条航线可以从A_i到B_i,那么保证不可能通过一些道路和航线从B_i回到A_i

这个条件很重要

如果我们把整个图缩点之后,就会发现,这种负边一定是连接着不同的两个连通块!

那么我们就可以在每个连通块内进行dijkstra了

然后就会发现需要进行拓扑排序才行。

然后我就不知道为啥wa了一天。。估计写的太乱了

我的方法是这样。

首先将整个图缩点。

然后把从源点到达不了的边都给干掉。

这样是方便我们拓扑排序用的。

然后把源点所在的联通块编号插入到队列中,开始拓扑排序。

拓扑过程中每次都要进行dijkstra,将某个联通块内的最短路求出来

我们用一些vector记录每个联通块中从别的连通块可以连边进来的点。

那么每次dijkstra时,就用这些点作为初始状态进行扩展

求完dijkstra后就开始删边,找下一个拓扑序列中的连通块, 同时更新每个联通块中从别的连通块可以连边进来的点。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define MAXN 55555
#define INF 1000010080
using namespace std;
typedef pair<int, int> P;
priority_queue<P, vector<P>, greater<P> > q;
vector<P> g[MAXN];
int dis[MAXN], vis[MAXN], cango[MAXN];
int src, n, R, m;
int scc, ind;
int dfn[MAXN], instack[MAXN], low[MAXN], fa[MAXN], in[MAXN], last[MAXN], num[MAXN], c[MAXN];
stack<int>st;
vector<int>bl[MAXN], got[MAXN];
void tarjan(int u)
{
    dfn[u] = low[u] = ++ind;
    st.push(u);
    instack[u] = 1;
    int sz = g[u].size();
    for(int i = 0; i < sz; i++)
    {
        int v = g[u][i].first;
        if(!dfn[v])
        {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        else if(instack[v]) low[u] = min(low[u], dfn[v]);
    }
    if(dfn[u] == low[u])
    {
        scc++;
        while(true)
        {
            int tmp = st.top();
            st.pop();
            instack[tmp] = 0;
            fa[tmp] = scc;
            bl[scc].push_back(tmp);
            if(tmp == u) break;
        }
    }
}
int que[MAXN];
int l, r;
void dij(int now)
{
    while(!q.empty()) q.pop();
    for(int i = 0; i < got[now].size(); i++)
    {
        int u = got[now][i];
        q.push(P(dis[u], u));
    }
    while(!q.empty())
    {
        P p = q.top();
        q.pop();
        int u = p.second, d = p.first;
        if(vis[u]) continue;
        vis[u] = 1;
        int sz = g[u].size();
        for(int i = 0; i < sz; i++)
        {
            int v = g[u][i].first;
            int w = g[u][i].second;
            if(fa[v] == fa[u])
            {
                if(d + w < dis[v])
                {
                    dis[v] = d + w;
                    q.push(P(dis[v], v));
                }
            }
        }
    }
}
void dfs(int u)
{
    cango[u] = 1;
    int sz = g[u].size();
    for(int i = 0; i < sz; i++)
    {
        int v = g[u][i].first;
        if(!cango[v]) dfs(v);
    }
}
void gao()
{
    que[r++] = fa[src];
    while(l < r)
    {
        int now = que[l++];
        dij(now);
        int sz = bl[now].size();
        for(int i = 0; i < sz; i++)
        {
            int u = bl[now][i];
            for(int j = 0; j < g[u].size(); j++)
            {
                int v = g[u][j].first;
                int w = g[u][j].second;
                if(fa[v] != now)
                {
                    --in[fa[v]];
                    if(dis[u] + w < dis[v]) dis[v] = dis[u] + w, got[fa[v]].push_back(v);
                    if(in[fa[v]] == 0) que[r++] = fa[v];
                }
            }
        }
    }
}
int main()
{
    int u, v, w;
    scanf("%d%d%d%d", &n, &R, &m, &src);
    for(int i = 1; i <= n; i++) dis[i] = INF;
    dis[src] = 0;
    for(int i = 0; i < R; i++)
    {
        scanf("%d%d%d", &u, &v, &w);
        g[u].push_back(P(v, w));
        g[v].push_back(P(u, w));
    }
    for(int i = 0; i < m; i++)
    {
        scanf("%d%d%d", &u, &v, &w);
        g[u].push_back(P(v, w));
    }
    for(int i = 1; i <= n; i++)
        if(!dfn[i]) tarjan(i);
    got[fa[src]].push_back(src);
    dfs(src);
    for(int i = 1; i <= n; i++)
    {
        if(!cango[i]) continue;
        int sz = g[i].size();
        for(int j = 0; j < sz; j++)
        {
            v = g[i][j].first;
            if(fa[v] != fa[i]) in[fa[v]]++;
        }
    }
    gao();
    for(int i = 1; i <= n; i++)
    {
        if(dis[i] == INF) printf("NO PATH\n");
        else printf("%d\n", dis[i]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值