c++基本代码

1.冒泡法: 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include <iostream.h> void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i<Count;i++) { for(int j=Count-1;j>=i;j--) { if(pData[j]<pData[j-1]) { iTemp = pData[j-1]; pData[j-1] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; BubbleSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"/n"; } 图示:
before_compare|one_turn|two_turn|three_turn|four_turn|five_turn|six_turn
10 10 10 10 10 10            
9 9 9 9 9 4 10
8 8 8 8 4 9 9
7 7 7 4 8 8 8
6 6 4 7 7 7 7
5 4 6 6 6 6 6
4 5 5 5 5 5 5
通过上图可以看出,冒泡法形象的描述来,4这个元素就像一个气泡逐渐冒到上
面来了。
我们排序的有7个元素,最坏的情况全部倒序,4这个元素要冒上来需要6次。
因此,n个元素,最坏的情况,需要移动:1+2+3+ ...+(n-1)=1/2*n(n-1)次。
倒序(最糟情况) 第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次) 第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:6次 其他: 第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次) 第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是
循环和交换,显然,次数越多,性能就越差。从上面的程序我们可以看出循环的
次数是固定的,为1+2+...+n-1。写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义: 若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!) 现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。
pp.sohu.com/u/178199931/wTO0j8AeHbD/pTO0TNYBW3g pp.sohu.com/u/178199931/wTO0j8AeHbD/pTO0TNYBW3g pp.sohu.com/u/178199931/wTO0b5Rmxt2 pp.sohu.com/u/178199931/wTO0itWuwaq pp.sohu.com/u/178199931/wTO02FejEIq pp.sohu.com/u/178199931/wTO0BOlwkGH pp.sohu.com/u/178199931/wTO0nSxqlkp pp.sohu.com/u/178199931/wTO0wjCdY1d pp.sohu.com/u/178199931/wTO0LDlFxQj pp.sohu.com/u/178199931/wTOYANgxaIM pp.sohu.com/u/178199931/wTOYYqFcVsG pp.sohu.com/u/178199931/wTOY62SvKGE pp.sohu.com/u/178199931/wTOYZPW3Rvk pp.sohu.com/u/178199931/wTOYb7kkaX2 pp.sohu.com/u/178199931/wTOYipyU5aj pp.sohu.com/u/178199931/wTOY9oRfl2p pp.sohu.com/u/178199931/wTOYQ6T5wJj pp.sohu.com/u/178199931/wTOYowLJMJn pp.sohu.com/u/178199931/wTOYw1AGtxX pp.sohu.com/u/178199931/wTOY7ijNYSt pp.sohu.com/u/178199931/wTOkxyYDjkv pp.sohu.com/u/178199931/wTOkc65wbtH pp.sohu.com/u/178199931/wTOkNrOQQTg pp.sohu.com/u/178199931/wTOkYVAj7Jf pp.sohu.com/u/178199931/wTOkMjO3ys1 pp.sohu.com/u/178199931/wTOkT157y4d pp.sohu.com/u/178199931/wTOktvFBJFg pp.sohu.com/u/178199931/wTOkmdGLfDx pp.sohu.com/u/178199931/wTOkUfQxeOG pp.sohu.com/u/178199931/wTOkyDtYEWE pp.sohu.com/u/178199931/wTOkVkF1RdD pp.sohu.com/u/178199931/wTOkBC8qaoA pp.sohu.com/u/178199931/wTOkHkIRFWD pp.sohu.com/u/178199931/wTOkomxtN8z pp.sohu.com/u/178199931/wTOkLy6jAwf pp.sohu.com/u/178199931/wTOkERyFMLN pp.sohu.com/u/178199931/wTOkunfLhLL pp.sohu.com/u/178199931/wTOhSj1ZEFj pp.sohu.com/u/178199931/wTOheZ0Ar1X pp.sohu.com/u/178199931/wTOh0WJufcN pp.sohu.com/u/178199931/wTOhMYiVEWx pp.sohu.com/u/178199931/wTOhTHoC4ag pp.sohu.com/u/178199931/wTOhDJLTn2E pp.sohu.com/u/178199931/wTOh3hSxLAc pp.sohu.com/u/178199931/wTOhmFQ8UO0 pp.sohu.com/u/178199931/wTOh8jDwmRf pp.sohu.com/u/178199931/wTOhUcaw0Mk pp.sohu.com/u/178199931/wTOh2fhccIq pp.sohu.com/u/178199931/wTOhO2TeeTJ pp.sohu.com/u/178199931/wTOhnH6z6R0 pp.sohu.com/u/178199931/wTOhwdqamCf
2.交换法: 交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。 #include <iostream.h> void ExchangeSort(int* pData,int Count) { int iTemp; for(int i=0;i<Count-1;i++) { for(int j=i+1;j<Count;j++) { if(pData[j]<pData[i]) { iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; ExchangeSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"/n"; }
before_compare|one_turn|two_turn|three_turn|four_turn|five_turn|six_turn
10 9 8 7 6 5            
9 10 10 10 10 10 10
8 8 9 9 9 9 9
7 7 7 8 8 8 8
6 6 6 6 7 7 7
5 5 5 5 5 6 6
4 4 4 4 4 4 5
从上面的算法来看,基本和冒泡法的效率一样。倒序(最糟情况)第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:6次其他:第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:3次从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。


3.选择法: 现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:
从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。 #include <iostream.h> void SelectSort(int* pData,int Count) { int iTemp; int iPos; for(int i=0;i<Count-1;i++) { iTemp = pData[i]; iPos = i; for(int j=i+1;j<Count;j++) { if(pData[j]<iTemp) { iTemp = pData[j]; iPos = j; } } pData[iPos] = pData[i]; pData[i] = iTemp; } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值