题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569
题目思路:
- 因为这个数据比较大,所以用动态规划会超时。
- 将图转换成黑白棋盘问题,i + j 为奇数的与s节点相连,边的权值为棋盘上对应位置的值,其他的与t节点相连,边的权值为棋盘上对应位置的值,然后让棋盘上相邻之间的节点用边相连,边的权值为INF。这样问题就转换为了最大点权独立集问题。
- 定理:
- 1、最大点权独立集 = sum - 最小点权覆盖集。
- 2、最小点权覆盖集 = 最小割 = 最大流
方格取数(2)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3101 Accepted Submission(s): 944
Problem Description
给你一个m*n的格子的棋盘,每个格子里面有一个非负数。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
Input
包括多个测试实例,每个测试实例包括2整数m,n和m*n个非负数(m<=50,n<=50)
Output
对于每个测试实例,输出可能取得的最大的和
Sample Input
3 3 75 15 21 75 15 28 34 70 5
Sample Output
188
代码:
/*
定理:
1、最大点权独立集 = sum - 最小点权覆盖集。
2、最小点权覆盖集 = 最小割 = 最大流
实现:dinic算法
*/
#include <iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int nMax = 2505;
const int INF = 0x7fffffff;
int queue[nMax];//建立层次图时使用到的队列
int dis[nMax];//各节点在层次图中对应的层次数
struct Edge
//邻接表,包括:边的起点、边的权值、起点相同的下一条边
{
int v, w, next;
Edge() {}
Edge(int v, int w, int next):v(v), w(w), next(next) {}
} adj[8 * nMax];
int V[nMax];//V[u]表示起点为u的第一条边,与Edge结合使用,从而实现邻接表的效果
int cnt;
int s, t;
int min(int a, int b)
{
return a < b ? a : b;
}
void add(int u, int v, int w)//向邻接表中添加 u - > v 结构
{
adj[cnt] = Edge(v, w, V[u]);
V[u] = cnt ++;
adj[cnt] = Edge(u, 0, V[v]);
V[v] = cnt ++;
}
int bfs()//建层次图
{
int front, rear;
int v;
memset(dis, 0, sizeof(dis));
front = rear = 0;
dis[s] = 1;
queue[front ++] = s;
while(rear < front)
{
int u = queue[rear ++];
for(int i = V[u]; i != -1; i = adj[i].next)//与u相连的边
if(adj[i].w && dis[v = adj[i].v] == 0)//可通行并且 v 之间没有被访问过
{
dis[v] = dis[u] + 1;
if(v == t) return 1;
queue[front ++] = v;
}
}
return 0;
}
int dfs(int u, int limit = INF)//返回从u出发到t,增广路经的最小边
{
if(u == t) return limit;
int count = 0;
for(int i = V[u]; i != -1; i = adj[i].next)//与u 相连的边
{
int v = adj[i].v;
if((dis[v] == dis[u] + 1) && adj[i].w)//根据层次的关系,找到的路径就为最短路径
{
int z = dfs(v, min(limit - count, adj[i].w));
if(z > 0)//增广路经的最小边不为0,即v到t可通行
{
count += z;
adj[i].w -= z;
adj[i ^ 1].w += z;//改为adj[i + 1] += z , 会超时!
}
else
dis[v] = -1;//效果等同于删除与v相关的所有边
}
}
return count;
}
int dinic()
{
int ans = 0;
while(bfs())//直到搜索不到增广路经为止
ans += dfs(s);
return ans;
}
void init()
{
cnt = 0;
memset(V, -1, sizeof(V));
}
int main()
{
int m, n;
int sum;
while(scanf("%d %d", &m, &n) != EOF)
{
init();
int x;
sum = 0;
s = 0;
t = m * n + 1;
for(int i = 1; i <= m; ++ i)
for(int j = 1; j <= n; ++ j)
{
scanf("%d", &x);
sum += x;
if((i + j) & 1)
{
add(s, (i - 1) * n + j, x);
//上
if(i > 1) add((i - 1) * n + j, (i - 2) * n + j, INF);
//下
if(i < m) add((i - 1) * n + j, i * n + j, INF);
//左
if(j > 1) add((i - 1) * n + j, (i -1) * n + j - 1, INF);
//右
if(j < n) add((i - 1) * n + j, (i - 1) * n + j + 1, INF);
}
else
add((i - 1) * n + j, t, x);
}
printf("%d\n",sum - dinic());
}
return 0;
}