AutoNest_v1.6_for_AutoCAD.rar

AutoNest_v1.6_for_AutoCAD.rar
Catia CAA 编程示范教程vedio.rar
CATIA CAA 二次开发资料(PDF).rar
CAXA制造工程师2006.rar
DELCAM_COPYCAD_V6.ISO
EPCON_SINET_V6.11-LND.rar
ETAP.v5.0.3.zip
FEKO5.2 使用手册.rar
Fluent.for.CATIA.v5.v1.0.8.rar
Geomagic_Qualify_5_中文版操作指导书.rar
GTPR2006_Thermoflow 16(GTPR2006).zip
Icepak培训教程-中文.rar
Intergraph Plant Design System(PDS)v07.00.00.15.rar
LMS.SYSNOISE.v5.6.rar
MapInfo.MapX.v5.02.zip
Mapx5.02.19中文期限破解版.rar
OptiFDTD.v6.0.rar
PHOENICS软件培训教程手册.doc
ProIntralink 系统用户培训教程资料.rar
TMA3.0.2.5.zip
北京道亨线路软件(SLCAD3。0)PJ版.zip
电力绘图助手_等解密.rar
华铸CAE 铸钢80.zip
星澜多媒体网络教室  80用户完美安装版.rar
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
需要软件请联系我们QQ客服:120991156


QQ客服:120991156  电话:13976633785


邮件Ema
<think>好的,我现在需要帮用户找到关于二维不规则形状排序、排版或布局的资料,特别是带有代码的。首先,我得理解用户的需求。二维不规则形状的排版可能涉及几何算法、优化问题,或者是计算机图形学中的应用。用户可能在做类似切割优化、布料裁剪、3D打印布局等项目,需要自动化排列不规则形状以减少材料浪费。 接下来,我得考虑相关领域的术语和关键词。可能的术语包括“二维不规则排样”、“Nesting Problem”、“bin packing”、“几何排版算法”等。这些关键词有助于更精准地搜索资料和代码库。 然后,我应该想到常用的算法和方法。比如遗传算法、模拟退火、启发式算法,或者基于物理的刚体模拟。还有像CGAL这样的几何处理库可能有相关工具。此外,一些开源项目或论文可能会提供代码示例。 用户需要带有代码的资料,所以可能需要查看GitHub、GitLab等平台,或者学术论文附带的代码。例如,搜索“2D irregular bin packing code”或“nesting problem GitHub”可能会找到相关项目。同时,Python的某些库如Shapely、PyQtGraph可能被用于实现这些算法。 还要考虑用户可能的编程语言偏好,比如Python、C++或MATLAB。但通常开源项目较多使用Python或C++,所以优先考虑这些语言的资源。 另外,学术数据库如arXiv、IEEE Xplore或Springer可能有相关论文,其中部分会提供算法伪代码或实验代码链接。例如,关于“基于深度学习的二维不规则形状排版”的研究可能提供TensorFlow或PyTorch的实现。 需要注意的是,二维不规则排版是一个NP难问题,所以很多解决方案是近似或启发式的。用户可能需要了解不同方法的优缺点,比如计算效率与优化效果的平衡。 最后,整理找到的资源,确保它们包含实际的代码示例,并分类说明其实现方法和应用场景,帮助用户选择适合自己项目的方案。同时提醒用户注意算法的复杂度和实际应用中的挑战,比如计算时间和局部最优解的问题。</think>以下是与二维不规则形状排版相关的资料及代码资源整理,分为算法解析、开源项目和代码库三部分: --- ### 一、核心算法与理论 1. **排样问题(Nesting Problem)** - **经典方法**:基于启发式算法(遗传算法、模拟退火、粒子群优化)和几何计算(多边形碰撞检测、旋转平移变换)。 - **关键步骤**: 1. **几何预处理**:多边形简化和凸分解(常用库:CGAL)。 2. **碰撞检测**:分离轴定理(SAT)或Minkowski差法。 3. **优化目标**:最小化板材面积或最大化利用率。 2. **物理模拟法** - 将形状视为刚体,通过重力下落模拟布局(类似布料裁剪优化),需结合约束求解器(如Box2D)。 --- ### 二、开源项目与代码库 1. **Python示例** ```python # 基于Shapely的简单多边形布局 from shapely.geometry import Polygon, box import matplotlib.pyplot as plt # 定义板材(100x100)和待排样形状 sheet = box(0, 0, 100, 100) parts = [Polygon([(i, i), (i+10, i), (i+10, i+5)]) for i in range(0, 80, 15)] # 可视化 fig, ax = plt.subplots() ax.set_xlim(0, 100) ax.set_ylim(0, 100) for part in parts: x, y = part.exterior.xy ax.fill(x, y, alpha=0.5) plt.show() ``` 2. **C++项目推荐** - **DeepNest**:基于SVG输入的自动排样工具([GitHub链接](https://github.com/Jack000/DeepNest))。 - **libnest2d**:支持多边形的嵌套库([GitHub链接](https://github.com/tamasmeszaros/libnest2d))。 --- ### 三、学术论文与进阶资源 1. **经典论文参考** - *A review on cutting path optimization methods* (Journal of Manufacturing Systems, 2020) - *Complete and robust no-fit polygon generation for irregular stock cutting* (CAD&Graphics, 2008) 2. **代码实现方向** - **几何计算**:使用CGAL处理多边形布尔运算。 - **优化算法**:基于DEAP库实现遗传算法优化布局。 - **可视化**:Matplotlib(Python)或Three.js(Web)。 --- ### 四、实用工具推荐 1. **商业软件**:AutoNEST、SigmaNEST(适合工业场景)。 2. **在线服务**:Deepnest.io(提供免费在线排样)。 --- 如需具体代码调试或算法细节探讨,可进一步说明需求场景(如切割优化、3D打印支撑布局等)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值