- 博客(3)
- 收藏
- 关注
原创 人工智能领域:推荐系统
为什么在抖音刷的时候停不下来,因为他推的都符合你的爱好兴趣,审美。这是推荐系统的核心。怎么知道用户喜欢什么?都融合在推荐算法中: 这种做法看似合理实际存在问题从神经网络流程来看,这种做法实际也是属于线性的,就玩命给你推舞蹈类的最后就局限在这一个范围。但是抖音平台也好,快手平台也好,他的内容是极其丰富的,会引起用户的审美疲劳,理论他不知是只喜欢这一个分类,他可能还喜欢别的,比如体育类的等等。那你为怎么不给他推啊?因为你是被这个线性的数据给限制了。
2023-04-09 16:43:04
764
原创 机器学习 OpenCV智能识别
机器学习的主要流程就是神经网络架构,由神经元组成,神经元通过神经元公式f(sum(x * w ) + b) 输入特征 乘以 输入权重 求和 加上 偏差 再过一下激活函数最后就会出现一个结果。第一原则:输入的特征 和 预测结果存在因果关系, 没有因果关系就是脏数据会影响机器学习的预测结果。神经元公式:f(sum(x * w ) + b)假设结果为10 数据可能为 特征 x = 2 权重 w = 4 偏差 b=2 算出结果为 10。x : 特征特征的选取:机器学习最关键的是特征的提取。 比如我要识别螃蟹,就不能
2023-04-09 16:32:42
849
原创 深度学习框架tensorflow
和OpenCV一样: 第一步先加载图像 区别是后面就是为深度学习做数据量的处理, 然后转化为特征矩阵,再转换形状,然后转化为向量也就是张量(张量就是把图像的像素或因素转化为0到1之间的浮点数,因为他要计算),然后加载模型我们没有走模型训练这一步原因是:需要输入大量的物体的特征,这个数据没必要搞,因为我们有现成的模型: imagenet 神经网络图形,他列属于ResNet50 的这个库( 这个数据集包含超过 100 万张图片)。# 将矩阵转换为相同形状。# 获取预测结果的标签。# 转化为人能理解的标签。
2023-04-09 16:27:13
1106
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人