IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID论文解读

ICCV 2021 oral
论文地址:https://arxiv.org/pdf/2108.02413.pdf
代码地址:https://github.com/SikaStar/IDM

动机

在两个域之间建立一个中间域(Intermediate Domain Module (IDM)),通过中间域来挖掘目标域潜在的表征特征,源域knowledge可以更好的迁移到目标域knowledge(和GAN那种生成图像级别的不同,它这里就是网络中的信息转移!!novel)。而这个中间域则是通过两个域的相似性和差异性建立的。

在这里插入图片描述

思路

提出两个loss来构建中间域:bridge loss用于更好的构建中间域,diversity loss用于防止中间域偏向于某一域。

个人理解:这种建立中间域和建立代理节点的思路是否相似?都是想利用两个域的共同特征去做一个域的迁移

方法

1、IDM模块可以即插即用,可以用在网络的任何stage后面,这样能及时产生中间域的表征。

2、用两个域的域特征融合作为中间域特征,然后三部分特征输入到下一个stage

3、中间域特征的选择问题:一是保持两个域的距离(bridge loss),二是不能偏向任何一个域(diversity loss)

输入:一个mini-batch包含n张源域图和n张目标与图

Intermediate Domain Module

1、对输入的图像采取随机配对取n对的策略作为输入

2、对stage1后的feature map分别采用 平均池化 和 全局池化 (这个算是一个trick,可尝试),获得的都是 1x1xc的feature map,然后拼接。分别丢进FC层获得 [bs, FC输出] 的tensor,然后逐元素相加。(这一步相当于进行融合了两个域的特征)融合的特征丢进MLP,获得一个domain factor :
在这里插入图片描述在这里插入图片描述

问题:a怎么分为两部分?MLP的输入是两部分逐元素相加,那获得的as和at都是比较混合的factor

MLP的输出是2维,再经过一个softmax,得到a。

个人理解:构建中间域特征的两个特点——1、两种池化方式然后拼接能不丢失域内特征。2、逐元素相加输入MLP获得一个参数a用作该域对构成中间域的贡献参数。

最终的中间域特征:
在这里插入图片描述

Modelling Appropriate Intermediate Domains

目的:中间域特征的组合很多,但不是全部都能满足很好的结合两个域的特征。

核心:最短路径,作者认为合适的中间域应该在两个域的最短路径上
在这里插入图片描述
如果两个域分别和中间域的距离之和大于两个域之间距离,则不满足最短路径。

1、as+at=1,这两个参数可以当作距离衡量参数
在这里插入图片描述
2、构建bridge loss
在这里插入图片描述
在这里插入图片描述
个人理解:就是用重构的中间域特征做分类和三元损失,并乘上一个权重参数a

3、构建diversity loss
在这里插入图片描述
目的:防止产生的参数偏向于某一个域

方法:对参数ait和ais分别求它们的标准差

实验

目前最高

backbone是ibn-resnet50
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值