ICCV 2021 oral
论文地址:https://arxiv.org/pdf/2108.02413.pdf
代码地址:https://github.com/SikaStar/IDM
动机
在两个域之间建立一个中间域(Intermediate Domain Module (IDM)),通过中间域来挖掘目标域潜在的表征特征,源域knowledge可以更好的迁移到目标域knowledge(和GAN那种生成图像级别的不同,它这里就是网络中的信息转移!!novel)。而这个中间域则是通过两个域的相似性和差异性建立的。
思路
提出两个loss来构建中间域:bridge loss用于更好的构建中间域,diversity loss用于防止中间域偏向于某一域。
个人理解:这种建立中间域和建立代理节点的思路是否相似?都是想利用两个域的共同特征去做一个域的迁移
方法
1、IDM模块可以即插即用,可以用在网络的任何stage后面,这样能及时产生中间域的表征。
2、用两个域的域特征融合作为中间域特征,然后三部分特征输入到下一个stage
3、中间域特征的选择问题:一是保持两个域的距离(bridge loss),二是不能偏向任何一个域(diversity loss)
输入:一个mini-batch包含n张源域图和n张目标与图
Intermediate Domain Module
1、对输入的图像采取随机配对取n对的策略作为输入
2、对stage1后的feature map分别采用 平均池化 和 全局池化 (这个算是一个trick,可尝试),获得的都是 1x1xc的feature map,然后拼接。分别丢进FC层获得 [bs, FC输出] 的tensor,然后逐元素相加。(这一步相当于进行融合了两个域的特征)融合的特征丢进MLP,获得一个domain factor :
问题:a怎么分为两部分?MLP的输入是两部分逐元素相加,那获得的as和at都是比较混合的factor
MLP的输出是2维,再经过一个softmax,得到a。
个人理解:构建中间域特征的两个特点——1、两种池化方式然后拼接能不丢失域内特征。2、逐元素相加输入MLP获得一个参数a用作该域对构成中间域的贡献参数。
最终的中间域特征:
Modelling Appropriate Intermediate Domains
目的:中间域特征的组合很多,但不是全部都能满足很好的结合两个域的特征。
核心:最短路径,作者认为合适的中间域应该在两个域的最短路径上
如果两个域分别和中间域的距离之和大于两个域之间距离,则不满足最短路径。
1、as+at=1,这两个参数可以当作距离衡量参数
2、构建bridge loss
个人理解:就是用重构的中间域特征做分类和三元损失,并乘上一个权重参数a
3、构建diversity loss
目的:防止产生的参数偏向于某一个域
方法:对参数ait和ais分别求它们的标准差
实验
目前最高
backbone是ibn-resnet50