管理环境
1. 查询所有虚拟环境
conda env list
或
conda info -e
说明:默认初始环境 (base)
2. 创建虚拟环境
conda create --name [env_name] [package_name1] [package_name2]
或
conda create -n [env_name] [package_name1] [package_name2]
例:conda create -n OpenCV3.6 python=3.6 NumPy
3. 激活虚拟环境
conda activate [env_name]
4. 停用虚拟环境
conda deactivate
5. 删除虚拟环境
conda remove -n [env_name] --all
6. 复制虚拟环境
conda create --name [new_env_name] --clone [old_env_name]
或
conda create --n [new_env_name] --clone [old_env_name]
7. 将当前激活环境的安装包依赖信息导出与安装
conda list -e > requirements.txt
conda install --yes --file requirements.txt
8. 通过 yml 文件复制环境
yaml 文件实现克隆环境(跨设备使用)
首先激活环境,再导出环境
activate [env_name]
conda env export > [env_name].yaml
yaml 文件创建新环境
如果想在同一台机器上复制,需要把 yaml 文件中的环境名修改为一个新的名字,否则会冲突
conda env create -f [env_name].yaml
conda 管理包
1. conda 搜索包
conda search [package_name]
2. conda 包列表
查看当前环境包列表
conda list
查看指定环境包列表
conda list -n [env_name]
3. conda 安装包
conda install [package_name]
4. conda 更新包
conda update [package_name]
5. conda 卸载包
conda remove [package_name]
pip 管理包
1. pip 包列表
pip list
2. pip 包安装
pip install [package_name]
3. pip 包信息
pip show [package_name]
4. pip 更新包
查看可以更新的包
pip list -o
更新包
pip install -U [package_name]
5. pip 卸载包
pip uninstall [package_name]
6. pip 版本
pip -V
7. pip 帮助
pip -h
8. 更换国内源
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
说明:安装包时,添加 “-i https://pypi.tuna.tsinghua.edu.cn/simple” 语句,可以更换国内源(清华源),提高下载速度。