hdoj 1005 Number Sequence (规律题)

http://acm.hdu.edu.cn/showproblem.php?pid=1005
题意是给定 A A B n n ,数列f(n)满足
f(1)=1,f(2)=1,f(n)=(Af(n1)+Bf(n2)) mod 7 f ( 1 ) = 1 , f ( 2 ) = 1 , f ( n ) = ( A ∗ f ( n − 1 ) + B ∗ f ( n − 2 ) )   m o d   7
n n 最大到108暴力模拟肯定T了,所以找规律,因为是mod7,所以 f[n1] f [ n − 1 ] f[n2] f [ n − 2 ] 肯定属于 [0,6] [ 0 , 6 ] ,分别有7种可能,组合一下就是49种,所以第49个数与第1个数相等,即 f[i]==f[i+48] f [ i ] == f [ i + 48 ] ,也就是每48个数一次循环,即 f[i]==f[i%48] f [ i ] == f [ i % 48 ]

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
int n,A,B,f[1010];
int main()
{
    while(scanf("%d%d%d",&A,&B,&n)&&(A||B||n))
    {
        f[1]=1;f[2]=1;
        for(int i=3;i<=48;i++)
            f[i]=(A*f[i-1]+B*f[i-2])%7;
        printf("%d\n",f[n%48]);
    }
} 
内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问转化为多维空间搜索问,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值