hdoj 1005 Number Sequence (规律题)

http://acm.hdu.edu.cn/showproblem.php?pid=1005
题意是给定 A A B n n ,数列f(n)满足
f(1)=1,f(2)=1,f(n)=(Af(n1)+Bf(n2)) mod 7 f ( 1 ) = 1 , f ( 2 ) = 1 , f ( n ) = ( A ∗ f ( n − 1 ) + B ∗ f ( n − 2 ) )   m o d   7
n n 最大到108暴力模拟肯定T了,所以找规律,因为是mod7,所以 f[n1] f [ n − 1 ] f[n2] f [ n − 2 ] 肯定属于 [0,6] [ 0 , 6 ] ,分别有7种可能,组合一下就是49种,所以第49个数与第1个数相等,即 f[i]==f[i+48] f [ i ] == f [ i + 48 ] ,也就是每48个数一次循环,即 f[i]==f[i%48] f [ i ] == f [ i % 48 ]

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
int n,A,B,f[1010];
int main()
{
    while(scanf("%d%d%d",&A,&B,&n)&&(A||B||n))
    {
        f[1]=1;f[2]=1;
        for(int i=3;i<=48;i++)
            f[i]=(A*f[i-1]+B*f[i-2])%7;
        printf("%d\n",f[n%48]);
    }
} 
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值