hdoj 1005 Number Sequence (规律题)

http://acm.hdu.edu.cn/showproblem.php?pid=1005
题意是给定 A A B n n ,数列f(n)满足
f(1)=1,f(2)=1,f(n)=(Af(n1)+Bf(n2)) mod 7 f ( 1 ) = 1 , f ( 2 ) = 1 , f ( n ) = ( A ∗ f ( n − 1 ) + B ∗ f ( n − 2 ) )   m o d   7
n n 最大到108暴力模拟肯定T了,所以找规律,因为是mod7,所以 f[n1] f [ n − 1 ] f[n2] f [ n − 2 ] 肯定属于 [0,6] [ 0 , 6 ] ,分别有7种可能,组合一下就是49种,所以第49个数与第1个数相等,即 f[i]==f[i+48] f [ i ] == f [ i + 48 ] ,也就是每48个数一次循环,即 f[i]==f[i%48] f [ i ] == f [ i % 48 ]

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
int n,A,B,f[1010];
int main()
{
    while(scanf("%d%d%d",&A,&B,&n)&&(A||B||n))
    {
        f[1]=1;f[2]=1;
        for(int i=3;i<=48;i++)
            f[i]=(A*f[i-1]+B*f[i-2])%7;
        printf("%d\n",f[n%48]);
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值