欧拉函数的定义与计算

                                        欧拉函数 

【定义】

数论,对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient functionφ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

【欧拉定理】

欧拉定理是用来阐述素数模下,指数同余的性质。

欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)

例如φ(8)=4,因为与8互质且小于等于8的正整数有4个,它们是:1,3,5,7

欧拉定理还有几个引理,具体如下:

  :如果n为某一个素数p,则φ(p)=p-1

  证明:因为素数p的质因数只有1和它本身,pp不为互质,所以φ(p)=p-1

 

 :如果n为某一个素数p的幂次,那么φ(p^a)=(p-1)*p^(a-1)

因为比p^a小的数有p^a-1个,那么有p^(a-1)-1个数能被p所整除(因为把1~p^a-1p的倍数都筛去了)

所以φ(p)=p^a-1-(p^(a-1)-1)=(p-1)*p^(a-1)

 

 

 :如果n为任意两个数ab的积,那么φ(a*b)=φ(a)*φ(b)

 因为比a*b小的数有a*b-1个,条件是ab互质

那么可以知道,只有那些既满足a与其互质且既满足b与其互质的数满足条件。

根据乘法原理,这样的数可以互相组合,那么就有φ(a)*φ(b)

 所以可以得知φ(a*b)=φ(a)*φ(b) (注意条件必须满足ab互质)

 

:设n=(p1^a1)*(p2^a2)*……*(pk^ak) (N的分解式)

 那么φ(n)=n*(1-1/p1)*(1-1/p2)*……*(1-1/pk)

因为各个分解完的p1p2……pk均为素数,所以它们均为互质的

每次再刨去它们本身,乘起来, 剩下的运用容斥原理,再根据引理和引理就可以得出

 

 

欧拉定理:a^(φ(m))1(mod m) (am互质)

【欧拉函数的通式】

φ(n)=n*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn)

【欧拉函数的直接实现】

 

直接实现:直接套用定理求解欧拉函数值

ll phi(ll n)
{
    ll res=n;
    for(int i=2;i*i<=n;i++){
        if(n%i==0){
            res=res-res/i;
            do{
                n/=i;
            }while(n%i==0);
        }
    }
    if(n>1) res=res-res/n;
    return res;
}

一:代码中的 ans-=ans/i;  这一步就是对应欧拉函数的通式?

二:while(n%i==0)   n/=i;    这一个语句是为了保证完全消除我们刚才得到的那个i因子。确保我们下一个得到的i是n的素因子。

三:if(n>1)ans-=ans/n;  这个语句是为了保证我们已经除完了n的所有的素因子,有可能还会出现一个我们未除的因子,如果结尾出现n>1 ,说明我们还剩一个素因子木有除。
 

【欧拉函数的递推实现】

void init()
{
   for(int i=1;i<=maxn;i++)  phi[i]=i;
   for(int i=2;i<=maxn;i+=2) phi[i]/=2;
   for(int i=3;i<=maxn;i+=2)
     if(phi[i]==i){
     for(int j=i;j<=maxn;j+=i)
        phi[j]=phi[j]/i*(i-1);
   }
}

欧拉函数的线性筛法

  大家都知道素数的线性筛法(点这里)吧,欧拉函数也有线性筛法,可以在线性时间内求出1~N的所有φ

 

    有以下三条性质:

 φ(p)=p-1

 φ(p*i)=p*φ(i) (当p%i==0时)

 φ(p*i)=(p-1)*φ(i) (p%i!=0)

代码实现:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int prime[100001],mark[1000001];//prime是素数数组,mark为标记不是素数的数组
int tot,phi[100001];//phi为φ(),tot为1~i现求出的素数个数
void getphi(int N){
    phi[1]=1;//φ(1)=1
    for(int i=2;i<=N;i++){//从2枚举到N
        if(!mark[i]){//如果是素数
            prime[++tot]=i;//那么进素数数组,指针加1
            phi[i]=i-1;//根据性质1所得
        }
        for(int j=1;j<=tot;j++){//从现求出素数枚举
            if(i*prime[j]>N) break;//如果超出了所求范围就没有意义了
            mark[i*prime[j]]=1;//标记i*prime[j]不是素数
            if(i%prime[j]==0){//应用性质2
                phi[i*prime[j]]=phi[i]*prime[j];break;
            }
            else phi[i*prime[j]]=phi[i]*phi[prime[j]];//应用性质3
        }
    }
}
int N;
int main(){
    cin>>N;
    getphi(N);
    for(int i=1;i<=N;i++){
        cout<<i<<":phi ( "<<phi[i]<<" )"<<endl;//输出phi(i)
    }
}

参考:https://blog.csdn.net/update7/article/details/70943545

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值