Multifeature Collaborative Adversarial Attack in Multimodal Remote Sensing Image Classification
深度神经网络具有较强的特征学习能力,但其脆弱性不容忽视。目前的研究表明,深度学习模型在遥感(RS)分类任务中受到对抗性示例的威胁,并且在面对对抗性攻击时其鲁棒性急剧下降。因此,已经研究了许多对抗性攻击方法来预测网络所面临的风险。然而,现有的对抗性攻击方法主要集中在单模态图像分类网络上,RS数据的快速增长使多模态RS图像分类成为研究热点。生成多模式对抗性示例需要考虑高攻击成功率、细微的扰动以及不同模式之间的协作攻击能力。
原创
2023-03-20 13:35:31 ·
572 阅读 ·
0 评论