一、前言
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用 分治法(Divide and Conquer) 的一个非常典型的应用。
二、算法思想
该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
动态效果示意图:
分而治之:
1、分阶段
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程,递归深度为logn。
2、治阶段
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。
C++代码:
#include <iostream>
#include <vector>
using namespace std;
void Merge(vector<int> &input, int left, int mid, int right, vector<int> temp){
int i = left; // i是第一段序列的下标
int j = mid + 1; // j是第二段序列的下标
int k = 0; // k是临时存放合并序列的下标
// 扫描第一段和第二段序列,直到有一个扫描结束
while (i <= mid && j <= right){
// 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描
if (input[i] <= input[j]){
temp[k++] = input[i++];
}
else{
temp[k++] = input[j++];
}
}
// 若第一段序列还没扫描完,将其全部复制到合并序列
while (i <= mid){
temp[k++] = input[i++];
}
// 若第二段序列还没扫描完,将其全部复制到合并序列
while (j <= right){
temp[k++] = input[j++];
}
k = 0;
// 将合并序列复制到原始序列中
while (left <= right){
input[left++] = temp[k++];
}
}
void MergeSort(vector<int> &input, int left, int right, vector<int> temp){
if (left < right){
int mid = (right + left) >> 1;
MergeSort(input, left, mid, temp);
MergeSort(input, mid + 1, right, temp);
Merge(input, left, mid, right, temp);
}
}
void mergesort(vector<int> &input){
// 在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
vector<int> temp(input.size());
MergeSort(input, 0, input.size() - 1, temp);
}
void main(){
int arr[] = { 6, 4, 8, 9, 2, 3, 1};
vector<int> test(arr, arr + sizeof(arr) / sizeof(arr[0]));
cout << "排序前:";
for (int i = 0; i < test.size(); i++){
cout << test[i] << " ";
}
cout << endl;
vector<int> result = test;
mergesort(result);
cout << "排序后:";
for (int i = 0; i < result.size(); i++){
cout << result[i] << " ";
}
cout << endl;
system("pause");
}
运行结果如下图所示:
可以看到已经可以看到归并排序算法顺利执行了。
python代码:
# -*- coding:utf-8 -*-
def MergeSort(input_list):
'''
函数说明:归并排序(升序)
Parameters:
input_list - 待排序列表
Returns:
sorted_list - 升序排序好的列表
'''
def merge(input_list, left, mid, right, temp):
'''
函数说明:合并函数
Parameters:
input_list - 待合并列表
left - 左指针
right - 右指针
temp - 临时列表
Returns:
无
'''
i = left
j = mid + 1
k = 0
while i <= mid and j <= right:
if input_list[i] <= input_list[j]:
temp[k] = input_list[i]
i += 1
else:
temp[k] = input_list[j]
j += 1
k += 1
while i <= mid:
temp[k] = input_list[i]
i += 1
k += 1
while j <= right:
temp[k] = input_list[j]
j += 1
k += 1
k = 0
while left <= right:
input_list[left] = temp[k]
left += 1
k += 1
def merge_sort(input_list, left, right, temp):
if left >= right:
return
mid = (right + left) // 2
merge_sort(input_list, left, mid, temp)
merge_sort(input_list, mid + 1, right, temp)
merge(input_list, left, mid, right, temp)
if len(input_list) == 0:
return []
sorted_list = input_list
temp = [0] * len(sorted_list)
merge_sort(sorted_list, 0, len(sorted_list) - 1, temp)
return sorted_list
if __name__ == '__main__':
input_list = [6, 4, 8, 9, 2, 3, 1]
print('排序前:', input_list)
sorted_list = MergeSort(input_list)
print('排序后:', sorted_list)
运行效果同上。
三、算法分析
1、归并排序算法的性能
其中,log2n为以2为底,n的对数。
2、时间复杂度
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是O(n*log2n)。
3、空间复杂度
由前面的算法说明可知,算法处理过程中,需要一个大小为n的临时存储空间用以保存合并序列。
4、算法稳定性
在归并排序中,相等的元素的顺序不会改变,所以它是稳定的算法。
5、归并排序和堆排序、快速排序的比较
若从空间复杂度来考虑:首选堆排序,其次是快速排序,最后是归并排序。
若从稳定性来考虑,应选取归并排序,因为堆排序和快速排序都是不稳定的。
若从平均情况下的排序速度考虑,应该选择快速排序。