大模型初探
文章平均质量分 81
零基础理解大模型,从利用AI解决具体一些问题开始。
月光技术杂谈
人工智能、无线通信(卫星 5G 星闪)、Openwrt、Linux、嵌入式等方面技术实践经验分享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Looki L1:当AI睁开“双眼”,感知物理世界的革命已然到来
无论如何,Looki L1的出现是一个强烈的信号:AI正在挣脱屏幕的束缚,真正地“走”进我们的物理世界。它不再只是一个回答问题的工具,而是开始尝试成为我们生活的观察者、记录者,乃至未来的协同者。未来的AI设备,无论是手机、眼镜还是耳机,都将集成更强大的传感器(摄像头、麦克风、各种运动与环境传感器),使其具备持续感知环境的能力。当前的ChatGPT、文心一言等大模型,本质是生活在“对话框”里的数字大脑,它们对世界的认知完全依赖于用户的主动描述。,使其认知建立在真实的视觉上下文之上,这更接近人类的学习方式。原创 2025-12-16 10:25:45 · 991 阅读 · 0 评论 -
构建本地知识库:从技术选型到实践部署
高效的知识管理与检索系统对于个人和团队都至关重要。本文将详细介绍如何利用一系列开源工具和技术,在本地搭建一个功能强大的知识库,并实现知识检索与推理服务。通过以上步骤,我们成功搭建了一个集知识管理、检索与推理服务于一体的本地知识库系统。希望本文能为各位开发者在构建知识库方面提供有益的参考与借鉴。将分块并向量化后的文档存入 Chroma 向量数据库,并持久化存储在。使用 Miniconda 创建一个名为。对加载的文档进行分块处理,设置合适的。原创 2025-12-02 19:41:11 · 1094 阅读 · 0 评论 -
Gemini 3 发布:当 AI 开始“理解”物理世界与因果逻辑
Gemini 3 的发布,让我们隐约看到了 GUI(图形用户界面)时代的黄昏。当 AI 能够理解物理世界,能够像资深工程师一样规划复杂任务,我们操作电脑的方式将从“点击菜单”彻底转变为“意图表达”。Google 这一次,不仅仅是发布了一个模型,而是发布了一个能够与现实世界“共鸣”的数字大脑。像资深工程师一样规划复杂任务,我们操作电脑的方式将从“点击菜单”彻底转变为“意图表达”。Google 这一次,不仅仅是发布了一个模型,而是发布了一个能够与现实世界“共鸣”的数字大脑。原创 2025-11-19 14:35:38 · 758 阅读 · 0 评论 -
阿里千问APP上线,中国AI参与全球C端争夺战
在技术架构上,2025年4月发布的千问3采用混合专家模型架构,总参数量235B,激活仅需22B,集成“快思考”与“慢思考”混合推理功能。阿里此次推出千问APP,代表着其AI战略的重大调整。阿里巴巴秘密打造的“千问APP”正式加入战场,标志着中国科技企业全面进军AI to C市场,全球AI竞争进入新阶段。随着千问APP的上线,中国AI应用市场的竞争将更加激烈,而真正的赢家,将是那些能够将AI技术转化为。随着千问APP的上线,中国AI应用市场的竞争将更加激烈,而真正的赢家,将是那些能够将AI技术转化为。原创 2025-11-18 11:27:06 · 1148 阅读 · 0 评论 -
目前用过最好用的AI扣图应用(完全免费)
AI大模型时代,基于深度学习的图像处理范式,大幅提高了图像处理能力的上限。在扣图应用方面,基于深度学习的算法能识别人像、通用对象,实现更为精准的背景消除。RMBG v1.4 旨在有效地将前景与背景在各种类别和图像类型中分离。该模型经过精心挑选的数据集训练,包括通用库存图片、电子商务、游戏和广告内容,适用于商业用例,支持企业内容的大规模创建。其准确性、效率和通用性目前与领先的源代码开放模型相媲美。本文将详细介绍如何在本地使用该模型实现图像背景去除。项目基于python, 个人pc上即可轻松部署运行。原创 2025-10-16 20:18:55 · 596 阅读 · 0 评论 -
CLI CodeBuddy初体验
之前用过trae和codebuddy-IDE两款AI 编程IDE, 第一次使用codeBuddy感觉非常棒,可能也跟以前经常在linux下使用命令开发、编辑代码有关。使用codebuddy可以用最少、最简洁的交互实现复杂想法。原创 2025-10-16 20:14:52 · 431 阅读 · 0 评论 -
用Deepseek 实现一个基于web的扣图应用
因工作需要偶尔要自己拍几张设备图片做一个产品手册,这时需要简单去除一下背景,要求不高,但是也不想自己研究ps这些复杂的图像处理工具了。因此就想研究一下扣图相关算法,并使用Deepseek实现了一个简单的扣图web应用。原创 2025-10-16 20:12:38 · 1281 阅读 · 0 评论 -
选择一个靠谱的AI 编程助手(主流AI编程助手实战评测)
想实现一个基于web的AI扣图应用,如果自己编程,那要会的东西可太多,那AI能不能帮助实现呢?本文将基于相同任务,对比主流AI编程模型的实战情况。原创 2025-10-10 17:36:02 · 1726 阅读 · 0 评论 -
基于AI模型的web扣图应用(tailwindcss & onnxruntime-web 本地化实践 )
是整个应用的模型运行核心,此外代码中还隐含另外两个关键在线资源(在线资源作用核心必要性微软官方的Web 端 ONNX 模型运行时,负责:1. 加载本地的model.onnx)模型;2. 处理图像张量(如预处理的像素归一化、维度转换);3. 执行模型推理(计算前景掩码,实现背景去除);4. 适配浏览器环境(通过 WASM/WebGL 加速计算)。必需:没有它,本地model.onnx无法在浏览器中运行。快速构建 UI 的 CSS 框架,负责页面样式(如按钮、卡片、布局)。非必需但推荐。原创 2025-09-30 09:29:12 · 1109 阅读 · 0 评论 -
豆包模型一句话实现一个web在线扣图应用,效果还非常好
经常要处理一些图片去背景,扣人像的工作。不想搞太大太专业的软件,想着AI编程都这么利害了,能不能让AI帮自己开发一个呢。原创 2025-09-28 17:37:37 · 1143 阅读 · 0 评论 -
2种方案让小爱音箱接入deepseek大模型(完全免费)
本文主要介绍更换小爱音箱大模型,使用deepseek的方法。完整教程,及MiGPT详细的安装和配置过程参考之前文章: [一步一步实操教你升级小爱音箱的智能-基于MiGPT和豆包大模型](https://mp.weixin.qq.com/s/9cT_IEViLpyoliYQjietHQ)原创 2025-02-14 16:06:06 · 8272 阅读 · 0 评论 -
Openwrt下运行glibc程序问题解决 Error relocating librknnrt.so __strdup symbol not found
摘要:在瑞芯微平台运行yolov5模型时出现__strdup: symbol not found错误,原因是librknnrt.so依赖的glibc符号在musl库中不存在。解决方法包括:1)确认系统C库类型和版本;2)对于musl系统,可手动实现__strdup并通过LD_PRELOAD加载;3)使用兼容musl的librknnrt.so版本。核心思路是确保系统C库包含所需符号或通过适配方案解决符号缺失问题。原创 2025-09-19 11:42:24 · 680 阅读 · 0 评论 -
Openwrt 平台下移植rk3568 rknn_yolov5_demo 应用程序问题分析
本文介绍了在RK3568+OpenWrt平台上运行YOLOv5 demo程序时遇到的动态链接兼容性问题。主要现象包括无法找到动态链接器/lib/ld-linux-aarch64.so.1以及多个符号缺失错误。作者分析了问题原因,即OpenWrt使用musl libc而程序依赖glibc的动态链接器。提出了三种解决方案:重新编译适配musl、创建符号链接或共存两种链接库。实际采用方法3,通过补丁解决符号缺失问题,并补全动态链接器,最终成功解决了程序运行问题。原创 2025-09-19 11:12:54 · 1138 阅读 · 0 评论 -
国内AI技术全面超越仍需突破基础研究和国际竞争的壁垒
未来5-10年,中国大模型能否在全球AI竞赛中占据主导地位,取决于能否在通用能力、数据质量、算力自主性等领域实现“从量变到质变”的跃迁。从当前全球大模型技术竞争格局来看,中国大模型产业确实展现出前所未有的突破潜力,但能否实现“全面超越”仍需从技术、生态、场景、政策等多个维度综合分析。一直以来,国内在科技方面都是追赶者的姿态,并常用利用后发优将1-100做到极致,进而在某些领域全面超越0-1的开拓者。下面将从多个方面进行分析。中国大模型产业的崛起并非偶然,而是技术积累、政策支持、市场需求共同作用的结果。原创 2025-07-29 10:10:03 · 1905 阅读 · 0 评论 -
深度学习基本概念之RKNN、ONNX、NCNN
三者的存在是为了应对深度学习 “训练框架多样、部署硬件异构” 的现状,共同推动模型从 “理论可行” 到 “产业可用” 的落地。RKNN、ONNX、NCNN 是深度学习模型从 “训练完成” 到 “实际部署” 全流程中不同环节的关键技术,它们的存在源于。:手机相机的 “实时美颜” 功能,可通过 NCNN 加载转换后的轻量化人脸关键点模型,在 CPU 上高效运行。三者定位不同但协同工作,共同支撑模型从 “实验室” 到 “产业落地” 的闭环。,由腾讯 AI 实验室 2017 年推出,主打 “轻量、高效、无依赖”。原创 2025-07-29 09:59:00 · 1104 阅读 · 0 评论 -
YOLO 的核心优势:“快” 与 “准” 的平衡
与传统目标检测算法(如 R-CNN 系列的 “先候选区域再分类”)不同,YOLO 创新性地采用 “单阶段检测” 思路,直接通过一个神经网络同时完成 “目标定位” 和 “类别预测”,实现了检测速度与精度的平衡,成为工业界(如自动驾驶、安防监控)和学术界的主流方案。YOLO 凭借 “速度快、精度高、易部署” 的特点,成为单阶段检测的标杆,其设计思想也影响了后续算法(如 RetinaNet、FCOS)的发展。原创 2025-07-24 16:20:39 · 367 阅读 · 0 评论 -
小爱音箱接入AI后记-使能模型联网功能
配置小爱同学接入豆包或deepseek模型后,小爱已经可以回答很多问题了,但是这些回答都是基于所选模型的历史训练数据,因此缺乏实效性,也就是说这些模型无法回答实时问题,比如说“当天新闻””最近热点“等。本文介绍如何通过为推理接入点设置关联应用来使能模型的联网能力。原创 2025-05-21 15:17:25 · 842 阅读 · 0 评论 -
当AI能完美模仿笔迹,签名还有意义吗?
首先,我的疑问是手写签名真的很难模仿吗,模仿签名有哪些难点。另外,即使每次写同个字,因受到多种因素(比如 心情,纸张、桌面、笔等)的影响,写出来的字有本身也有一定区别。所以,就算是同一人的不同的签名版本,真的有共同的、唯一性的特征吗?其核心功能将从“证明我是谁”转向“证明我意愿的真实性”,并深度融入数字信任生态。手写签名的模仿难度极高,其难点不仅在于动态特征的复杂性,还涉及细节特征、心理因素与防御技术的多重挑战。即使同一人的签名存在随机波动,但其动态特征的组合规律与细节特征的唯一性仍构成天然防线。原创 2025-04-28 17:18:23 · 799 阅读 · 0 评论 -
如何借助AI快速生成一份商业计划书-个人AI助理一体机 “ UniAgent ”
AI的文笔相当出从,无论诗文还是公文都游刃有余,本文体现一下使用AI写一份商业计划书。你要做的就是提供一个灵感。如果不想让大模型太发散,也可以查一点资料对AI进行投喂,使得其输出的方案更合你的胃口。以下介绍 介绍详细过程。欢迎关注公众号交流讨论更多好玩的AI应用。原创 2025-04-18 16:36:42 · 898 阅读 · 0 评论 -
西方力推的5G O-RAN难以撼动传统通信设备商
Open RAN因技术不成熟、政治干预和生态内耗宣告失败,华为、中兴凭借技术实力和市场积淀巩固优势。美国以“开放”之名行封闭之实,反而凸显中国企业在5G领域的不可替代性。通信技术竞争最终依赖技术创新与生态协作,政治操弄难撼产业规律。优先部署AI驱动的RIC应用(如流量预测xApp);从边缘网络试水多厂商O-RAN(如农村覆盖场景);联合厂商构建安全认证联盟,降低供应链风险。原创 2025-03-13 15:45:53 · 1178 阅读 · 0 评论 -
Intel 平台大模型加速库 OpenVINO 安装试用
Intel 平台大模型加速库 OpenVINO 安装试用原创 2025-03-11 08:56:13 · 684 阅读 · 0 评论 -
使用AnythingLLM + 本地AI模型来构建私有知识系统 避坑问题整理
本文使用AnythingLLM 来构建私有知识系统,借助AnythingLLM 提供的总体框架 ,调用了Ollama适配的本地deepseek/llama3 模型进行推理、文本嵌入转矢量。并通过投喂语料来让聊天系统自动查询知识库作为响应的主要来源。验证结果表明, AnythingLLM 在集成度和易用性方面非常优秀,但是在响应有知识系统构建的有效性方面体验不太好。文中对验证过程遇到的问题进行了总结 。后续将考虑使用langchain基于python库进行知识 库构造的问答推理,以期改进体验原创 2025-03-11 08:54:36 · 1570 阅读 · 0 评论 -
基于langchain+llama2的本地私有大语言模型实战
LangChian 作为一个大语言模型(LLM, ***Large Language Model***)开发框架,是 LLM 应用架构的重要一环。借助 LangChain,我们可以创建各种应用程序,包括聊天机器人和智能问答工具。原创 2025-03-10 17:51:24 · 710 阅读 · 0 评论 -
基于llama_cpp 调用本地模型(llama)实现基本推理
零基础实践本地推理模型基本应用: 基于llama_cpp的本地模型调用。本文先安装 **llama_cpp** python库,再编写程序,利用其调用llama-2-7b-chat.Q4_K_M.ggu模型。原创 2025-03-10 17:49:31 · 1547 阅读 · 0 评论 -
llama.cpp 利用intel集成显卡xpu加速推理
用 llama.cpp 调用 Intel 的集成显卡 XPU 来提升推理效率.原创 2025-03-07 17:27:00 · 851 阅读 · 0 评论 -
最简单的基于openAI 接口的推理大模型调用程序
从零学习ai 应用编程: hello ai world! 基于python + openai接口库实现本地推理调用原创 2025-03-07 14:15:40 · 474 阅读 · 0 评论 -
AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异
本文演示了一个实际编程案例,在一台配备Intel CPU和集成显卡的个人PC上,对比GPU/CPU在一些耗时运算方面的性能差异,并通过图表展示对比结果。涉及基本的神经网络模型 编程,如python环境配置、矩阵运算、前向传播、反向传播,基于Intel集成显卡GPU的开发环境配置等原创 2025-03-07 14:12:42 · 1064 阅读 · 0 评论 -
抢先试用 字节跳动 AI 编程工具 Trae ,确实好用!!!
近日, 字节跳动发布AI编程工具Trae – 中国首个AI原生IDE!可以深度理解中文, 支持一句话开发各种应用。AI 编程工具 Trae 是字节跳动发布的国内首个 AI 原生集成开发环境。搭载 doubao-1.5-pro,支持切换 DeepSeek R1&V3。有 Chat 和 Builder 模式,能代码补全、修复 Bug、理解代码仓库,以人机协同理念,助开发者高效编程,降低开发门槛。原创 2025-03-05 15:37:38 · 2794 阅读 · 0 评论 -
Intel集成显卡 如何玩转AI 神器pytorch
最近AI太火了,老技术人备感压力,各种恶补知识。手上有一台性能还不错的老笔记本: 配置是cpu i7 cpu + Iris Xe集成显卡 ,能否用来搭建一套GPU环境来进行一些AI模型的训练和学习呢。答案是:yes。本文先重点关注基于Intel集成显卡 Iris Xe 显卡的Pytorch 开发环境搭建,后续逐步分享一些AI小项目进行实操。原创 2025-03-04 16:52:23 · 2981 阅读 · 1 评论 -
一文详解基于NarrotoAI的短剧短视频自动解说、混剪AI平台搭建
短剧剪辑不仅是内容创作的热门领域,更是学习AI技术的绝佳实践场景。通过将AI工具深度融入短剧制作的各个环节(如解说台词生成、脚本生成,自动剪辑等),创作者可在完成作品的同时,系统掌握前沿技术,文中涉及大量AI相关工具,全部可以免费获得原创 2025-02-28 17:16:19 · 2963 阅读 · 0 评论 -
联想E470 双GPU笔记本部署私有AI模型方案
手上有一台联想E470的闲置笔记本,配置如下: (Intel HD 620核显 + NVIDIA 920MX独显,i5-7200U CPU),想用它来部署并学习AI模型。原创 2025-02-18 16:42:41 · 962 阅读 · 0 评论 -
各种操作系统下 GPU型号及服务器型号查询
十六 核处理器, 16C/32T, 10.4GT/s, 22M 高速缓存, Turbo, HT (125W) DDR4-2666。原创 2025-02-17 19:10:07 · 526 阅读 · 0 评论 -
关于DeepSeek与ChatGPT等模型的原始训练数据
DeepSeek与ChatGPT等模型的原始训练数据是否一样。原创 2025-02-15 08:00:00 · 801 阅读 · 0 评论 -
Deepseek推荐的适合制作产品彩页的AI工具
▸ 配图补充:Midjourney(生成高质量产品图)▸ 细节优化:Canva免费版(图标/字体微调)▸ 主工具:天工AI彩页(快速生成标准化框架)▸ 延展设计:Designs.ai 全渠道输出。▸ 品牌适配:Designs.ai 风格匹配。▸ 框架生成:boardmix免费版。▸ 动态增强:Gamma基础模板。▸ 主视觉:Gamma国际风模板。▸ 快速迭代:触站AI方案优化。原创 2025-02-14 14:27:39 · 3210 阅读 · 0 评论 -
无须高配电脑-ChatboxAI 利用SiliconCloud 接入在线deepseek
Deepseek官方api调用 方式收费,官网提供的在线推理又经常出现”服务器繁忙,请稍后再试“的问题。本文借助本地聊会客户端 ChatboxAI, 通过SiliconCloud 平台来接入各种在线大模型,包括Deepseek.原创 2025-02-14 14:05:24 · 630 阅读 · 0 评论 -
无须高配电脑 ChatboxAI 对接deepseek 部署免费的私人AI助理(无须联网 可本地使用)
打开 Chatbox 设置,选择“使用自己的API key或本地模型。,选择模型`deepseek-r1或llama(选择 “Ollama API” 作为模型来源,ChatboxAI还支持各种其他 功能。原创 2025-02-14 13:59:28 · 492 阅读 · 2 评论 -
Deepseek给通信工程师规划的技术 变现策略
本文提供一个deepseek为技术人员支招,通过技术能力变现的案例。某技术人员背景: 10年通信行业工作经验,从事过3G,4G,5G协议栈研发及系统优化,从事过卫星通信基站协议栈研发,从事过5G终端基带芯片加速器及协议栈架构优化,喜欢钻研技术,熟悉linux/openwrt等系统下编程及性能优化,擅长C语言,有python、shell、go等编程经验。有博客 写作经验,在某博客平台上1000粉丝,发布文章150篇。基于以上背景,如何在工作之余利用技术能力创造更多价值,以下是deepseek给出的方案。原创 2025-02-12 14:17:50 · 603 阅读 · 0 评论 -
个人PC win11 快速部署deepsek本地大模型 体验AI交互
- 本文介绍了如何在个人pc上快速部署AI系统,同时下载了deepseek和llama3两种大模型,网速快的话,1个小时就能完成 部署。当然前提是pc的性能不太差。- 测试电脑配置: i7-1260P + Iris Xe + 16G内存。原创 2025-02-12 14:15:12 · 1753 阅读 · 0 评论 -
一个AI小白关于deepseek的一些疑问和解答
使用 DeepSeek 是最基础和常见的方式,满足一般性的智能交互需求。训练 DeepSeek 则是为了让模型更贴合特定用户的业务需求和数据特点,提升模型在特定场景下的性能。而私有部署 DeepSeek 通常是在完成训练后,将模型部署在私有环境中,以便在安全可控的前提下,高效地使用经过定制化训练的模型为企业内部的业务系统、应用程序等提供智能支持,三者相互关联,共同为用户和企业利用 DeepSeek 技术提供了不同层次的解决方案。原创 2025-02-11 16:31:29 · 1599 阅读 · 0 评论 -
利用用个人PC搭建私有大模型(低成本、易实施的私有大模型部署方案,兼顾英语 5G协议学习与实践需求)
个人有2台电脑, 第一台: laptop cpu 12th Gen Intel® Core™ i7-1260P 2.10 GHz, GPU intel iris® Xe graphics, 第二台: MS-7D22,Intel® Core™ i5-10400F CPU @ 2.90GHz, GeForce GT 730。想利用这2台电脑部署一些入门级的私有大模型。主要用于体验 AI大模型的功能,帮助学习及理解AI模型原理, 个人知识数据库积累,5G通信研究和学习,智能交互,英语学习。原创 2025-02-11 16:26:39 · 1184 阅读 · 0 评论
分享