LBP算子总结-需后期补充

LBP:local binary pattern

LBP算子可分为以下几种:

1.基本LBP算子,通常是指灰度不变LBP,即gray scale invariant LBP,8邻域情况下共有256种输出,即特征向量有256种取值可能性

2.旋转不变LBP算子:rotation invariant LBP,8邻域情况下共有36种输出

3.均匀模式LBP算子:uniform LBP,8邻域情况下共有58种输出

4.均匀不变LBP算子:rotaion invariant & uniform pattern LBP,8邻域情况下共有9种输出


参考的博文:

1。http://blog.csdn.net/jinshengtao/article/details/18219697

2。http://blog.sina.com.cn/s/blog_973bec650101rmjm.html

3。http://blog.sina.com.cn/s/blog_48ce1c2d0101b4us.html (含java语言实现的 均匀模式LBP算子)

备注:8邻域说法等同于8个采样点


后期需要补充:各种算子比较,提出者,对应论文,发表年份,适用领域,可运行的代码

### 使用 MATLAB 进行人脸识别的毕业设计方案 #### 方案概述 人脸识别技术近年来得到了广泛应用和发展。本方案旨在通过MATLAB平台实现人脸检测与识别功能,具体包括预处理、特征提取以及分类器训练等多个环节[^2]。 #### 数据准备 为了确保模型的有效性和准确性,在项目初期收集大量带标签的人脸图片作为训练集和测试集。对于3D数据读取部分,可采用`absload()`函数来加载包含XYZ坐标的三维点云文件,并将其保存为`.ply`格式以便于后期处理。 #### 预处理阶段 获取到原始图像之后,应该先去除无关背景干扰(比如脖子肩膀等部位),只保留脸部核心区域用于后续操作;接着调整大小至统一规格,增强对比度使细节更加明显,最后转化为灰度图减少计算量的同时保持重要信息不变。 #### 特征提取方法 考虑到效率与效果之间的平衡,这里选用局部二值模式(Local Binary Patterns, LBP)算子来进行纹理描述,它具有旋转不变性好、抗噪能力强等特点。此外还可以尝试其他主流算法如PCA(Principal Component Analysis),LDA(Linear Discriminant Analysis)[^3]。 #### 训练过程 选取合适的机器学习框架完成监督式学习流程——即输入已标注样本让计算机自动构建映射关系从而具备预测未知实例的能力。常用的支持向量机(Support Vector Machine,SVM),K近邻(K-nearest neighbor,KNN)都是不错的选择。 #### 测试评估指标 最终要对整个系统的性能进行全面评测,主要考察以下几个方面: - **精度(Precision)**: 正确识别为人脸的数量占所有被判定为人脸的比例; - **召回率(Recall)** : 能够成功检出的真实人脸数在整个真实集合中的占比; - **F1得分(F1 Score)** :综合考虑上述两者得出的一个衡量标准。 ```matlab % 加载库函数 addpath('toolbox_general'); addpath('toolbox_calib'); % 设置参数 dataFolder = 'faces'; % 图片所在路径 modelFile = 'faceModel.mat'; % 创建对象 detector = vision.CascadeObjectDetector(); % 获取文件列表 files = dir(fullfile(dataFolder,'*.jpg')); % 初始化变量 numImages = length(files); images = cell(numImages,1); for i=1:numImages images{i} = imread(fullfile(dataFolder, files(i).name)); end % 提取特征并建立数据库 features = []; labels = []; for k=1:length(images) img = rgb2gray(images{k}); face = detector.step(img); croppedImg= imcrop(img,face(1,:)); featureVec= extractFeatures(croppedImg); %[待补充具体的特征抽取逻辑] features(k,:) = featureVec; labels(k) = getLabelFromFileName(files(k).name); %[定义如何从文件名解析类别标签] end save(modelFile,'features','labels'); % 存储中间结果供离线建模使用 function featVector = extractFeatures(image) % [此处编写实际使用的特征提取代码片段] end function labelValue = getLabelFromFileName(fileName) % [根据命名规则返回对应的身份ID或其他属性标记] end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值