POJ 1419 Graph Coloring(最大独立集)


点击打开链接


题意是:给出n个点已经m组相邻点,给每个点上黑色或者白色,黑色点之间不能相邻,问最多可以给几个点上黑色。


最大独立集就是求一个图中最多的顶点集,使得两两之间都不相邻。最大独立集中点的个数 = 补图中最大团中点的个数 (补图就是原来相邻的变成不相邻,不相邻的变成相邻,但是点和本身之间还是看成不相邻的)


上黑色看成是放到一个集合中去,该集合中的点是互不相邻的,问该集合最多有几个点?所以就是相当于求最大独立集。


#include<cstring>
#include<string>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#define N 150
using namespace std;
int n, m, x, y, tsn, tnn, maxs, T;
int some[N][N], all[N][N], none[N][N], re[N][N], ans[N];
void dfs(int d, int an, int sn, int nn)
{
    int u, v;
    if (sn == 0 && nn == 0)
    {
        if (an > maxs)
            {
                maxs = an;
                for (int i = 1; i <= maxs; i++)
                    ans[i] = all[d][i];
            }
    }
    u = some[d][1];
    for (int i = 1; i <= sn; i++)
    {
        v = some[d][i];
        if (re[u][v]) continue;
        for (int j = 1; j <= an; j++) all[d+1][j] = all[d][j];
        all[d+1][an+1] = v;
        tsn = 0;
        tnn = 0;
        for (int j = 1; j <= sn; j++)
            if (re[v][some[d][j]]) some[d+1][++tsn] = some[d][j];
        for (int j = 1; j <= nn; j++)
            if (re[v][none[d][j]]) none[d+1][++tnn] = none[d][j];
        dfs(d+1, an+1, tsn, tnn);
        some[d][i] = 0;
        none[d][++nn] = v;
    }
}
int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d", &n, &m);
        memset(re, 0, sizeof(re));
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                if (i != j)
                {
                    re[i][j] = 1;
                    re[j][i] = 1;
                }
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d", &x, &y);
            re[x][y] = 0;
            re[y][x] = 0;
        }
        maxs = 0;
        for (int i = 1; i <= n; i++) some[1][i] = i;
        dfs(1, 0, n, 0);
        printf("%d\n", maxs);
        for (int i = 1; i < maxs; i++)
            printf("%d ", ans[i]);
        printf("%d\n", ans[maxs]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值