- 博客(5)
- 资源 (1)
- 收藏
- 关注
原创 街景字符识别-task5-模型集成
模型集成集成学习方法深度学习中的集成方法DropoutTTASnapshot结果后处理 集成学习方法 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。 由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。 下面假设构建了10折交叉验证,训练得到10个CNN模型。 那么在10个CNN模型可以使用如下方式进行集成: 对预测的结果
2020-06-02 21:09:45
239
原创 街景字符识别-task4-模型训练与验证
街景字符识别-模型训练与验证构建验证集模型训练与验证模型保存与加载模型调参 构建验证集 在深度学习过程中,模型是非常容易出现过拟合。过拟合指模型误差在训练集上随着训练次数和模型复杂度增加而减少,却在测试集上先减后增,而我们追求的是在测试集上精度越高越好。如下所示: 导致模型过拟合原因很多,最常见的是模型复杂度太高,学习到训练数据的方方面面和一些细枝末节。解决上述问题最好的办法是,构建一个与测试集尽可能分布一直的样本集,即验证集,在训练过程中不断训练模型在验证集上的精度,并以此控制模型的训练。 训练集,验证
2020-05-30 21:02:02
214
原创 街景识别-字符识别模型-CNN
字符模型识别学习目标CNN介绍Pytorch构建CNN模型 学习目标 1.学习CNN基础和原理 2.使用Pytorch框架构建CNN,并完成训练 CNN介绍 卷积神经网络(CNN)是一类特殊的人工神经网络,是深度学习的重要分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。 CNN是一种层次模型,输入的是院士的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(no
2020-05-26 13:53:19
1853
原创 街景识别-数据读取与数据扩增
数据读取与数据扩增一、学习目标二、图像读取2.1 pillow2.2 OpenCV三、数据扩增四 Pytorch赛题读取 一、学习目标 1.1 学习Python和Pytorch中图像读取 2.2 学会扩增方法和Pytorch读取赛题数据 二、图像读取 2.1 pillow pillow是Python图像处理函数库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以和ipython notebook无缝集成,是应用比较广泛的库。 pillow官方文档. 2.2 OpenCV OpenC
2020-05-23 20:44:33
1160
原创 街景识别-零基础入门-task1
这里写自定义目录标题街景识别-理解篇名称目标数据思路评测指标 街景识别-理解篇 名称 街道字符识别 目标 1.以计算机视觉为背景,预测街道字符编码,完成字符识别。 2.走进计算机视觉领域,锻炼并提高对数据建模的能力。 数据 数据集来自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),并根据一定方式采样得到实验数据集。数据集在阿里云 天池报名后可见并可下载,该数据来自真实场景的门牌号。训练集数据包括3W张照片,验证集数据包括1W张照
2020-05-20 17:17:09
3624
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人