数独

数独是源自18世纪瑞士的一种数学游戏。是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3*3)内的数字均含1-9,不重复。数独盘面是个九宫,每一宫又分为九个小格。在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。使1-9每个数字在每一行、每一列和每一宫中都只出现一次,所以又称“九宫格”。给你这样一个九宫格,你能求出这个数独的解么?保证数独有唯一解


九阶标准数独:


字符代码:

#include<cstdio>
#include<cstdlib>
char a[10][10],tmp[5];
int f;
void print()
{
	f=1;
	printf("\nAnswer:\n");
	for (int i=1;i<=9;++i)
	{
		for (int j=1;j<=9;++j) putchar(a[i][j]);
		puts("");
	}
	return ;
}
void dfs(int x,int y)
{
	if (f) return ;
	if (x==10)
	{
		print();
		return ;
	}
	if (a[x][y]!='0')
	{
		if (y==9) dfs(x+1,1);
		else dfs(x,y+1);
	}
	else
	{
		bool s[10]={0};
		for (int i=1;i<=9;++i) s[a[x][i]-'0']=1;
		for (int i=1;i<=9;++i) s[a[i][y]-'0']=1;
		int h1=x,h2=x,s1=y,s2=y;
		while (h1%3!=1) h1--;
		while (h2%3!=0) h2++;
		while (s1%3!=1) s1--;
		while (s2%3!=0) s2++; 
		for (int i=h1;i<=h2;++i)
			for (int j=s1;j<=s2;++j)
				s[a[i][j]-'0']=1;
		for (int i=1;i<=9;++i)
			if (!s[i])
			{
				a[x][y]=i+'0';
				if (y==9) dfs(x+1,1);
				else dfs(x,y+1);
				a[x][y]='0';
			}
	}
}
int main()
{
	for (int i=1;i<=9;++i)
	{
		for (int j=1;j<=9;++j) a[i][j]=getchar();
		gets(tmp);
	}
	dfs(1,1);
	return 0;	
}


数字代码:

#include<cstdio>
#include<cstdlib>
int  a[10][10],f;
void print()
{
	f=1;
	printf("\nAnswer:\n");
	for (int i=1;i<=9;++i)
	{
		for (int j=1;j<=9;++j) printf("%d ",a[i][j]);
		puts("");
	}
	return ;
}
void dfs(int x,int y)
{
	if (f) return ;
	if (x==10)
	{
		print();
		return ;
	}
	if (a[x][y]!=0)
	{
		if (y==9) dfs(x+1,1);
		else dfs(x,y+1);
	}
	else
	{
		bool s[10]={0};
		// 横判断 
		for (int i=1;i<=9;++i) s[a[x][i]]=1;
		// 竖判断 
		for (int i=1;i<=9;++i) s[a[i][y]]=1;
		int h1=x,h2=x,s1=y,s2=y;
		// 寻找边界 
		while (h1%3!=1) h1--;
		while (h2%3!=0) h2++;
		while (s1%3!=1) s1--;
		while (s2%3!=0) s2++; 
		// 宫判断
		for (int i=h1;i<=h2;++i)
			for (int j=s1;j<=s2;++j)
				s[a[i][j]]=1;
		for (int i=1;i<=9;++i)
			if (!s[i])
			{
				a[x][y]=i;
				if (y==9) dfs(x+1,1);
				else dfs(x,y+1);
				a[x][y]=0;
			}
	}
}
int main()
{
	for (int i=1;i<=9;++i)
		for (int j=1;j<=9;++j) scanf("%d",&a[i][j]);
	dfs(1,1);
	return 0;	
}

n阶数独:

#include<cstdio>
#include<cstdlib>
int a[10][10],n,f;
void print()
{
	f=1;
	printf("\nAnswer:\n");
	for (int i=1;i<=n;++i)
	{
		for (int j=1;j<=n;++j) printf("%d ",a[i][j]);
		puts("");
	}
	return ;
}
void dfs(int x,int y)
{
	/*
	for (int i=1;i<=n;++i)
	{
		for (int j=1;j<=n;++j) printf("%d ",a[i][j]);
		puts("");
	}
	system("pause");
	*/
	if (f) return ;
	if (x==n+1)
	{
		print();
		return ;
	}
	if (a[x][y]!=0)
	{
		if (y==n) dfs(x+1,1);
		else dfs(x,y+1);
	}
	else
	{
		bool s[10]={0};
		// 横判断 
		for (int i=1;i<=n;++i) s[a[x][i]]=1;
		// 竖判断 
		for (int i=1;i<=n;++i) s[a[i][y]]=1;
		int h1=x,h2=x,s1=y,s2=y,m1,m2;
		if (n==9) m1=3,m2=3;
		else if (n==6) m1=2,m2=3; 
		// 寻找边界 
		while (h1%m1!=1) h1--;
		while (h2%m1!=0) h2++;
		while (s1%m2!=1) s1--;
		while (s2%m2!=0) s2++; 
		// 宫判断
		for (int i=h1;i<=h2;++i)
			for (int j=s1;j<=s2;++j)
				s[a[i][j]]=1;
		for (int i=1;i<=n;++i)
			if (!s[i])
			{
				a[x][y]=i;
				if (y==n) dfs(x+1,1);
				else dfs(x,y+1);
				a[x][y]=0;
			}
	}
}
int main()
{
	printf("read n:\n");
	scanf("%d",&n);
	printf("read number:\n");
	for (int i=1;i<=n;++i)
		for (int j=1;j<=n;++j) scanf("%d",&a[i][j]);
	dfs(1,1);
	return 0;	
}


速度更快的代码

#include<cstdio>
char a[10][10],tmp[5];
int hang[10][10],lie[10][10],gong[5][5][10],f;
void print()
{
	f=1;
	for (int i=1;i<=9;++i)
	{
		for (int j=1;j<=9;++j) putchar(a[i][j]);
		puts("");
	}
	return ;
}
void dfs(int x,int y)
{
	if (f) return ;
	if (y==10) x++,y=1;
	if (x==10)
	{
		print();
		return ;
	}
	if (a[x][y]!='0') dfs(x,y+1);
	else
	{
		bool s[10];
		for (int i=1;i<=9;++i)
			if (!hang[x][i] && !lie[y][i] && !gong[(x-1)/3+1][(y-1)/3+1][i])
			{
				a[x][y]+=i;
				hang[x][i]=1;
				lie[y][i]=1;
				gong[(x-1)/3+1][(y-1)/3+1][i]=1;
				dfs(x,y+1);
				a[x][y]-=i;
				hang[x][i]=0;
				lie[y][i]=0;
				gong[(x-1)/3+1][(y-1)/3+1][i]=0;
			}
	}
}
int main()
{
	for (int i=1;i<=9;++i)
	{
		for (int j=1;j<=9;++j) a[i][j]=getchar();
		gets(tmp);
	}
	for (int i=1;i<=9;++i)
		for (int j=1;j<=9;++j) hang[i][a[i][j]-'0']=1,lie[j][a[i][j]-'0']=1;
	for (int i=1;i<=9;i+=3)
		for (int j=1;j<=9;j+=3)
			for (int heng=i;heng<=i+2;++heng)
				for (int shu=j;shu<=j+2;++shu)
					gong[(i-1)/3+1][(j-1)/3+1][a[heng][shu]-'0']=1;
	dfs(1,1);
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值