题目:
题目链接:[LUOGU 守墓人]
题解:
线段树单点修改,区间修改,单点查询,区间查询,一系列线段树基本操作,模板打就好。
(回头再补一个分块和树状数组的这种板子题,就是用分块和树状数组再写一遍,,练练手用)
代码:
#include<bits/stdc++.h>
#define LL long long
#define lk (k<<1)
#define rk (k<<1|1)
using namespace std;
inline int read()
{
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch<='9'&&ch>='0')s=s*10+ch-'0',ch=getchar();
return s*w;
}
const int sea=2e5+7;
struct hit{int l,r;LL w,lazy;}tr[sea*4];
int n,m;
void build(int k,int l,int r)
{
tr[k].l=l,tr[k].r=r;
if(l==r){tr[k].w=read(); return ;}
int mid=(l+r)/2;
build(lk,l,mid); build(rk,mid+1,r);
tr[k].w=tr[lk].w+tr[rk].w;
}
void down(int k)
{
if(!tr[k].lazy) return ;
tr[lk].lazy+=tr[k].lazy;tr[rk].lazy+=tr[k].lazy;
tr[lk].w+=tr[k].lazy*1LL*(tr[lk].r-tr[lk].l+1);
tr[rk].w+=tr[k].lazy*1LL*(tr[rk].r-tr[rk].l+1);
tr[k].lazy=0;
}
void alter(int k,int x,int y,int z)
{
int l=tr[k].l,r=tr[k].r;
if(x<=l&&r<=y){tr[k].w+=z*1LL*(r-l+1);tr[k].lazy+=z;return ;}
down(k); int mid=(l+r)/2;
if(x<=mid) alter(lk,x,y,z);if(y>mid) alter(rk,x,y,z);
tr[k].w=tr[lk].w+tr[rk].w;
}
LL ask(int k,int x,int y)
{
int l=tr[k].l,r=tr[k].r;
if(x<=l&&r<=y) return tr[k].w;
down(k); int mid=(l+r)/2;LL ans=0;
if(x<=mid) ans+=ask(lk,x,y); if(y>mid) ans+=ask(rk,x,y);
return ans;
}
int main()
{
n=read(); m=read(); build(1,1,n);
for(int i=1;i<=m;i++)
{
int s=read();
if(s==1){int x=read(),y=read(),z=read();alter(1,x,y,z);}
else if(s==2){int z=read();alter(1,1,1,z);}
else if(s==3){int z=read();alter(1,1,1,-z);}
else if(s==4){int x=read(),y=read();printf("%lld\n",ask(1,x,y));}
else printf("%lld\n",ask(1,1,1));
}
return 0;
}
题目:
题目链接:[LUOGU 维护序列
题目链接:
这个题,,简直就是线段树模板2的双倍经验,但是当时我的线段树模板2的码风比较菜,所以打算重新写一遍,,,
代码:
#include<bits/stdc++.h>
#define int long long
#define lk k<<1
#define rk k<<1|1
using namespace std;
inline int read()
{
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch<='9'&&ch>='0')s=s*10+ch-'0',ch=getchar();
return s*w;
}
const int sea=1e5+7;
struct hit{int l,r,w,ladd,lmul;}tr[sea*4];
int n,m,s,x,y,z,mod;
void build(int k,int l,int r)
{
tr[k].l=l,tr[k].r=r,tr[k].ladd=0,tr[k].lmul=1;
if(l==r) {tr[k].w=read(); return ;}
int mid=(l+r)/2;
build(lk,l,mid); build(rk,mid+1,r);
tr[k].w=tr[lk].w+tr[rk].w; if(tr[k].w>=mod) tr[k].w-=mod;
}
void down(int k,int len)
{
tr[lk].w=(tr[lk].w*tr[k].lmul+tr[k].ladd*(len+1>>1))%mod;
tr[rk].w=(tr[rk].w*tr[k].lmul+tr[k].ladd*(len>>1))%mod;
tr[lk].lmul=(tr[k].lmul*tr[lk].lmul)%mod;
tr[rk].lmul=(tr[k].lmul*tr[rk].lmul)%mod;
tr[lk].ladd=(tr[lk].ladd*tr[k].lmul+tr[k].ladd)%mod;
tr[rk].ladd=(tr[rk].ladd*tr[k].lmul+tr[k].ladd)%mod;
tr[k].ladd=0,tr[k].lmul=1;
}
void alter_add(int k)
{
int l=tr[k].l,r=tr[k].r;
if(l>=x&&r<=y)
{
tr[k].ladd+=z;
if(tr[k].ladd>=mod) tr[k].ladd-=mod;
tr[k].w=(tr[k].w+z*(r-l+1))%mod;
return ;
}
down(k,r-l+1); int mid=(l+r)/2;
if(x<=mid) alter_add(lk); if(y>mid) alter_add(rk);
tr[k].w=tr[lk].w+tr[rk].w; if(tr[k].w>=mod) tr[k].w-=mod;
}
void alter_mul(int k)
{
int l=tr[k].l,r=tr[k].r;
if(l>=x&&r<=y)
{
tr[k].ladd=(tr[k].ladd*z)%mod;
tr[k].lmul=(tr[k].lmul*z)%mod;
tr[k].w=(tr[k].w*z)%mod;
return ;
}
down(k,r-l+1); int mid=(l+r)/2;
if(x<=mid) alter_mul(lk); if(y>mid) alter_mul(rk);
tr[k].w=tr[lk].w+tr[rk].w; if(tr[k].w>=mod) tr[k].w-=mod;
}
int ask(int k)
{
int l=tr[k].l,r=tr[k].r;
if(l>=x&&r<=y) return tr[k].w;
down(k,r-l+1); int mid=(l+r)/2; int ans=0;
if(x<=mid) ans+=ask(lk); if(y>mid) ans+=ask(rk);
if(ans>=mod) ans-=mod;
tr[k].w=tr[lk].w+tr[rk].w; if(tr[k].w>=mod) tr[k].w-=mod;
return ans;
}
signed main()
{
n=read(); mod=read(); build(1,1,n); m=read();
for(int i=1;i<=m;i++)
{
s=read(); x=read(); y=read();
if(s==1) {z=read(); alter_mul(1);}
else if(s==2){z=read(); alter_add(1);}
else printf("%lld\n",ask(1));
}
return 0;
}