有向图的强连通分量
tarjan算法,时间复杂度O(n+m),可以有重边,自环.有向图的强连通分量是指极大联通分量,其内部所有点互相可达.
1.以未建立时间戳的点为起点进行dfs,将该点压入栈中,建立该点的时间戳(f数组)并初始化从该点出发的最小的时间戳(mf数组).
2.遍历以该点为起点的所有终点,若未建立时间戳则继续进行dfs,结束后更新mf数组;否则若在栈中,也更新mf数组.
3.递归回到该点后,该点的mf值如果等于f值表示它是一个强连通分量的最高点,此时不断出栈至该点即可得到这个强连通分量的所有点集.
4.tarjan算法完成后,强连通分量的编号从大到小就是一个拓扑序.
5.若要转换为拓扑图,遍历所有边,如果不在同一个强连通分量中,在这两个强连通分量之间连边.
最少加max(q,p)条边把有向图中的所有点转换成强连通分量中的点,q,p分别为缩点后的入度,出度为1的点的个数
#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
const int N=1e4+10,M=5e4+10;
int h[N],nex[M],to[M],con=1,in[N],f[N],mf[N],in_stack[N],out[N],scc=0,id[N],nscc[N],ts=1;
stack<int>s;
void add(int a,int b)
{
nex[con]=h[a];
h[a]=con;
to[con++]=b;
}
void dfs(int x)
{
f[x]=mf[x]=ts++;
s.push(x);
in_stack[x]=1;
for(int i=h[x];i;i=nex[i])
{
int t=to[i];
if(!f[t])
{
dfs(t);
mf[x]=min(mf[x],mf[t]);
}
else if(in_stack[t])
mf[x]=min(mf[x],mf[t]);
}
if(f[x]==mf[x])
{
int t;
do
{
t=s.top();s.pop();
in_stack[t]=0;
id[t]=scc;
nscc[scc]++;
}while(t!=x);
scc++;
}
}
int main()
{
int n,m;cin>>n>>m;
while(m--)
{
int a,b;scanf("%d%d",&a,&b);
add(a,b);
in[b]++;
}
for(int i=1;i<=n;++i)
{
if(!f[i])
dfs(i);
}
for(int i=1;i<=n;++i)
for(int j=h[i];j;j=nex[j])
{
int t=to[j];
if(id[i]!=id[t])
{
//连边
}
}
}