有向图的强连通分量

本文介绍了如何利用Tarjan算法高效地找出有向图的强连通分量,时间复杂度为O(n+m),允许存在重边和自环。强连通分量是指图中每个点都能到达其他点的极大联通子图。算法步骤包括深度优先搜索、栈操作和判断强连通条件。最后,讨论了如何根据强连通分量生成拓扑序,并转换为拓扑图。
摘要由CSDN通过智能技术生成

有向图的强连通分量

       tarjan算法,时间复杂度O(n+m),可以有重边,自环.有向图的强连通分量是指极大联通分量,其内部所有点互相可达.

       1.以未建立时间戳的点为起点进行dfs,将该点压入栈中,建立该点的时间戳(f数组)并初始化从该点出发的最小的时间戳(mf数组).

       2.遍历以该点为起点的所有终点,若未建立时间戳则继续进行dfs,结束后更新mf数组;否则若在栈中,也更新mf数组.

       3.递归回到该点后,该点的mf值如果等于f值表示它是一个强连通分量的最高点,此时不断出栈至该点即可得到这个强连通分量的所有点集.

       4.tarjan算法完成后,强连通分量的编号从大到小就是一个拓扑序.

       5.若要转换为拓扑图,遍历所有边,如果不在同一个强连通分量中,在这两个强连通分量之间连边.

最少加max(q,p)条边把有向图中的所有点转换成强连通分量中的点,q,p分别为缩点后的入度,出度为1的点的个数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
const int N=1e4+10,M=5e4+10;
int h[N],nex[M],to[M],con=1,in[N],f[N],mf[N],in_stack[N],out[N],scc=0,id[N],nscc[N],ts=1;
stack<int>s;
void add(int a,int b)
{
    nex[con]=h[a];
    h[a]=con;
    to[con++]=b;
}
void dfs(int x)
{
    f[x]=mf[x]=ts++;
    s.push(x);
    in_stack[x]=1;
    for(int i=h[x];i;i=nex[i])
    {
        int t=to[i];
        if(!f[t])
        {
            dfs(t);
            mf[x]=min(mf[x],mf[t]);
        }
        else if(in_stack[t])
        mf[x]=min(mf[x],mf[t]);
    }
    if(f[x]==mf[x])
    {
        int t;
        do
        {
            t=s.top();s.pop();
            in_stack[t]=0;
            id[t]=scc;
            nscc[scc]++;
        }while(t!=x);
        scc++;
    }
}
int main()
{
    int n,m;cin>>n>>m;
    while(m--)
    {
        int a,b;scanf("%d%d",&a,&b);
        add(a,b);
        in[b]++;
    }
    for(int i=1;i<=n;++i)
    {
        if(!f[i])
        dfs(i);
    }
    for(int i=1;i<=n;++i)
        for(int j=h[i];j;j=nex[j])
        {
            int t=to[j];
            if(id[i]!=id[t])
            {

            //连边

            }
        }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值