Longest Palindromic Substring (最大回文子字符串)

77 篇文章 0 订阅
7 篇文章 0 订阅

Longest Palindromic Substring (LPS) 问题是一个DP中的经典问题。处理这个问题的第一个关键点在于要区分substring和subsequence(我就犯了这样的错误)。substring指的是连续的子字符串,比如abc是abcde的substring, 但abe就不是它的substring,但可以算一个subsequence.

下面介绍这道题的若干种解法。

1)brute force方法。遍历每一对index,取做起点和终点,然后判断这个substring是不是回文。取点的过程花费O(n^2),判断的过程花费O(n),所以一共O(n^3)。

2)经典DP方法。时间O(n^2);空间O(n^2)。

string longestPalindromeDP(string s) {
  int n = s.length();
  int longestBegin = 0;
  int maxLen = 1;
  bool table[1000][1000] = {false};
  for (int i = 0; i < n; i++) {
    table[i][i] = true;
  }
  for (int i = 0; i < n-1; i++) {
    if (s[i] == s[i+1]) {
      table[i][i+1] = true;
      longestBegin = i;
      maxLen = 2;
    }
  }
  for (int len = 3; len <= n; len++) {
    for (int i = 0; i < n-len+1; i++) {
      int j = i+len-1;
      if (s[i] == s[j] && table[i+1][j-1]) {
        table[i][j] = true;
        longestBegin = i;
        maxLen = len;
      }
    }
  }
  return s.substr(longestBegin, maxLen);
}

关键步的思路是:对于一个string,如果它的首尾两个char相同,而除去首位以后剩下的是个回文,则这个string本身也是回文。这个方法是最经典最常见的DP解法,但却不是最优解法。在介绍这个解法的升级版之前,先看下面这段代码。它是这个方法的另一种写法:

string longestPalindromeDP(string s) {
        int len = s.length();
        
        if (len == 0) return string("");
        else if (len == 1) return s;
        else if (len == 2) return (s[0] == s[1] ? s : s.substr(0, 1));

        bool table[1000][1000] = {false};
        string result = s.substr(0, 1);
                
        for (int i = 0; i < len - 1; i ++) {
                table[i][i] = true;
                if (s[i] ==s[i+1]) {
                        table[i][i + 1] = true;
                        result = s.substr(i, 2);
                }
        }
        table[len - 1][len - 1] = true;
                
        for (int l = 3; l <= len; l ++) {
                for (int i = 0; i < len - l + 1; i ++) {
                        int j = i + l - 1;
                        if (s[i] == s[j] && table[i+1][j-1]) {
                                table[i][j] = true;                                        
                                result = s.substr(i, l);
                        }
                }
        }
        return result;
}

可以看到,这段代码跟上面的那一段非常非常相似。唯一细小的差别是,上面的代码每一次记录起始位置和substring的长度,到返回之前再取substring;而这段代码每次直接取substring了。这样看来,上面的代码稍稍更好一点(时间复空间杂度都相同)。但就是这么一点点的区别,在leetcode上的就变成了非常显著的区别:上方代码可以通过大数据测试,但下方的不行,说超时了。事实上,我用time命令和较大的输入跑了两段代码,发现他们的差别是可以忽略不计的。说了这么多废话貌似只表达了leetcode服务器上的计时非常精准。。。

3)节省空间的DP算法。我们的方法2)需要使用O(n^2)的空间。而这里介绍的这种方法同样使用O(n^2)的时间,却可以使用O(1)的extra space。这个算法的思路是,每一个回文的string都是像中间对称的,所以可以由中间“展开”所得。这里的“中间”可以是一个字母(当length为奇数),也可以是两个字母中间的位置(length为偶数)。所以一共有2N-1个“中间”,其中N是字符的个数。而展开需要O(N)的时间,所以一共是O(n^2)。代码如下:

string expandAroundCenter(string s, int c1, int c2) {
  int l = c1, r = c2;
  int n = s.length();
  while (l >= 0 && r <= n-1 && s[l] == s[r]) {
    l--;
    r++;
  }
  return s.substr(l+1, r-l-1);
}
 
string longestPalindromeSimple(string s) {
  int n = s.length();
  if (n == 0) return "";
  string longest = s.substr(0, 1);  // a single char itself is a palindrome
  for (int i = 0; i < n-1; i++) {
    string p1 = expandAroundCenter(s, i, i);
    if (p1.length() > longest.length())
      longest = p1;
 
    string p2 = expandAroundCenter(s, i, i+1);
    if (p2.length() > longest.length())
      longest = p2;
  }
  return longest;
}

4)一种非常容易错的DP算法。有些人会想:既然我们要找的是回文,那么如果我把这个string s调转过来,变成s',然后再找s和s'的最长common substring,不就是我们需要的回文了么?这个思路犯了一个不易察觉的错误。比如:

acbc这个string调过来变成cbca。那么我们找这两个string的common subsequence可以找到cbc,正好是我们需要的最长回文。但下面就有一个反例:

abxyba,调转以后是abyxba那么找到的common string是ab (或ba),但他们不是回文。

从上面的反例我们可以看出,我们不但需要找到最长的common substring,找到以后还要检查一下index看是否对应。所以说做这样一个小改动之后,这个算法还是可以用的。时间和空间复杂度都是O(n^2)。这道题也相应地变成了一个找两个string最长common substring的问题。这也是一个DP经典问题。具体解法请自行google。。

5)终极算法:Manacher’s Algorithm。时间复杂度O(n)。

首先拿到一个字符串S之后,我们在每个字符之间插入一个特殊字符#。比如:abaaba转化成#a#b#a#a#b#a#。这样做的好处是,不论原来的字符长度是奇数还是偶数,转化以后都可以使用相同的方式来处理。针对处理后的字符(我们称之为T),我们建立一个与其长度相同的int数组p。p[i]的含义是以T[i]为中心的回文字符串可以向左右各延伸几个字符。比如上面这个例子中,对应的p数组是:

T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
我们发现,T中最长的回文substring是以第六个(index从0算起)字符(是一个‘#’)为中心的,左右长度各为6的字符,因为p[6] = 6, 是p中最大的。一个更重要的性质是,以中心为对称轴来观察的话,会发现左右两边的数值是对称的。如果这条性质始终满足的话,我们岂不是可以少了一半的工作量么。我们来看下面一个稍微复杂一点的例子:

S=babcbabcbaccba,对应地T=#b#a#b#c#b#a#b#c#b#a#c#c#b#a#。我们看下面这张图:


假设我们现在来到了i=13的位置。我们可以先看13对应的对称点是多少,发现对称点是9,而p[9] = 1。显而易见,p[13]的值也是1。事实上,以C(此处为11)为中心的左右三个点都是对称的,即p[12] = p[10], p[13] = p[9], p[14] = p[8]。

假设说我们现在来到了i=15的位置:


它的对应点是7,而p[7] = 7。这是否意味着p[15]也等于7呢?不是。因为我们发现以15为中心的最长回文是a#b#c#b#a,左右两边比7要短的多。这是怎么回事呢?我们看下面这张图:


我们看到,绿色实线所覆盖的区域的T是相对C对称的,L和R是左右边界。而在7的位置,对应的数值是7,已经超过了左边界。这种情况下,p的对称原则就不再满足了。我们目前只能知道p[15]的最大值是5(到达右边界为止)。然后我们再继续扩张就会发现,T[21] != T[1],所以p[15]只能是5了。

所以这个算法的最关键步骤如下:

if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].

当我们发现扩张的时候超出了右边界的话,那么就是时候更新centre C和右边界R了:C=i,而R是扩张的尽头,即:R = i + p[i]。所以这个算法的完整代码如下:

// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
  int n = s.length();
  if (n == 0) return "^$";
  string ret = "^";
  for (int i = 0; i < n; i++)
    ret += "#" + s.substr(i, 1);
 
  ret += "#$";
  return ret;
}
 
string longestPalindrome(string s) {
  string T = preProcess(s);
  int n = T.length();
  int *P = new int[n];
  int C = 0, R = 0;
  for (int i = 1; i < n-1; i++) {
    int i_mirror = 2*C-i; // equals to i' = C - (i-C)
     
    P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;
     
    // Attempt to expand palindrome centered at i
    while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
      P[i]++;
 
    // If palindrome centered at i expand past R,
    // adjust center based on expanded palindrome.
    if (i + P[i] > R) {
      C = i;
      R = i + P[i];
    }
  }
 
  // Find the maximum element in P.
  int maxLen = 0;
  int centerIndex = 0;
  for (int i = 1; i < n-1; i++) {
    if (P[i] > maxLen) {
      maxLen = P[i];
      centerIndex = i;
    }
  }
  delete[] P;
   
  return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
}

注意这段代码的开头处还有一个巧妙的地方在于,在T的首尾各插入了一个不同于'#'的特殊字符,这样就不用进行boundary check了,很方便。



Ref:

http://leetcode.com/2011/11/longest-palindromic-substring-part-i.html

http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值