7-6 最小生成树 畅通工程之最低成本建设问题 (20 分)
某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了有可能建设成快速路的若干条道路的成本,求畅通工程需要的最低成本。
输入格式:
输入的第一行给出城镇数目N (1<N≤1000)和候选道路数目M≤3N;随后的M行,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号(从1编号到N)以及该道路改建的预算成本。
输出格式:
输出畅通工程需要的最低成本。如果输入数据不足以保证畅通,则输出“Impossible”。
输入样例1:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例1:
12
输入样例2:
5 4
1 2 1
2 3 2
3 1 3
4 5 4
输出样例2:
Impossible
代码:
#include <iostream>
#include <vector>
#include <set>
using namespace std;
int mar[1010][1010];
const int f = 1e5;
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i++)
{
int a, b, c;//输入数据
cin >> a >> b >> c;
mar[a][b] = c;
mar[b][a] = c;
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)//初始化
{
if (i != j && mar[i][j] == 0)
{
mar[i][j] = f;
}
}
}
int dis[n + 1];
for (int i = 1; i <= n; i++)
{
dis[i] = mar[1][i];
}
bool visit[n + 1] = {false};
visit[1] = true;
int ret = 0;
int s = n - 1;
while (s--) //每次放入一个点
{
int p = -1;
int cnt = f;
for (int i = 1; i <= n; i++)
{
//寻找不在树中且与树最近的点
if (!visit[i] && dis[i] < cnt)
{
p = i;
cnt = dis[i];
}
}
if (p == -1)
{ //如果p的初值没变,说明图不连通
cout << "Impossible" << endl;
return 0;
}
visit[p] = true;
ret += cnt;
dis[p] = 0;
for (int i = 1; i <= n; i++)
{
//用点p尝试缩短其余点到树的距离
if (!visit[i] && dis[i] > mar[p][i])
{
dis[i] = mar[p][i];
}
}
}
cout << ret << endl;
return 0;
}