1-3 表达式转换 (25 分)

1-3 表达式转换 (25 分)

算术表达式有前缀表示法、中缀表示法和后缀表示法等形式。日常使用的算术表达式是采用中缀表示法,即二元运算符位于两个运算数中间。请设计程序将中缀表达式转换为后缀表达式。

输入格式:

输入在一行中给出不含空格的中缀表达式,可包含+-*\以及左右括号(),表达式不超过20个字符。

输出格式:

在一行中输出转换后的后缀表达式,要求不同对象(运算数、运算符号)之间以空格分隔,但结尾不得有多余空格。

输入样例:

2+3*(7-4)+8/4

结尾无空行

输出样例:

2 3 7 4 - * + 8 4 / +

结尾无空行
  • 从左到右扫描每一个字符。如果扫描到的字符是操作数(如a、b等),就直接输出这些操作数。

  • 如果扫描到的字符是一个操作符,分三种情况:

    (1)如果堆栈是空的,直接将操作符存储到堆栈中(push it)

    (2)如果该操作符的优先级大于堆栈出口的操作符,就直接将操作符存储到堆栈中(push it)

    (3)如果该操作符的优先级低于堆栈出口的操作符,就将堆栈出口的操作符导出(pop it), 直到该操作符的优先级大于堆栈顶端的操作符。将扫描到的操作符导入到堆栈中(push)。

  • 如果遇到的操作符是左括号"(”,就直接将该操作符输出到堆栈当中。该操作符只有在遇到右括号“)”的时候移除。这是一个特殊符号该特殊处理。

  • 如果扫描到的操作符是右括号“)”,将堆栈中的操作符导出(pop)到output中输出,直到遇见左括号“(”。将堆栈中的左括号移出堆栈(pop )。继续扫描下一个字符

  • 如果输入的中缀表达式已经扫描完了,但是堆栈中仍然存在操作符的时候,我们应该讲堆栈中的操作符导出并输入到output 当中。

代码:

注:这道题的难点主要是在处理数字前的正负号上,同时还应该注意数字有小数点并且不是一位数字

#include <bits/stdc++.h>
using namespace std;
stack<char> st;
map<char, int> mp;
int main()
{
    mp['+'] = mp['-'] = 1; //定义运算符的优先级
    mp['*'] = mp['/'] = 2;
    string s = "";
    cin >> s;
    int flag = 1;

    for (int i = 0; i < s.length(); ++i)
    {
        if (isdigit(s[i]) || ((!i || s[i - 1] == '(') && (s[i] == '+' || s[i] == '-')))
        { //处理操作数
            if (!flag)
                cout << " ";
            else
                flag = 0;
            if (s[i] != '+')
                cout << s[i];
            while (s[i + 1] == '.' || isdigit(s[i + 1]))
                cout << s[++i]; //小数继续往后读
        }
        else
        { //处理运算符
            if (s[i] == '(')
                st.push(s[i]); //(:压栈
            else if (s[i] == ')')
            { //):将栈顶的运算符弹出并输出,直到遇到左括号(出栈,不输出)
                while (!st.empty() && st.top() != '(')
                {
                    cout << " " << st.top();
                    st.pop();
                }
                st.pop();
            }
            else if (st.empty() || mp[s[i]] > mp[st.top()])
                st.push(s[i]); //s[i]的优先级比栈顶元素的大
            else
            {
               while (!st.empty() && st.top() != '(' && mp[s[i]] <= mp[st.top()])
                { //s[i]的优先级比栈顶元素的小或等
                    cout << " " << st.top();
                    st.pop();
                }
                st.push(s[i]);
            }
        }
    }
    while (!st.empty())
    {
        cout << " " << st.top();
        st.pop();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值