7-9 Huffman Codes (30 分)

7-9 Huffman Codes (30 分)

In 1953, David A. Huffman published his paper “A Method for the Construction of Minimum-Redundancy Codes”, and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string “aaaxuaxz”, we can observe that the frequencies of the characters ‘a’, ‘x’, ‘u’ and ‘z’ are 4, 2, 1 and 1, respectively. We may either encode the symbols as {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111}, or in another way as {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000}, both compress the string into 14 bits. Another set of code can be given as {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101}, but {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} is NOT correct since “aaaxuaxz” and “aazuaxax” can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0’s and '1’s.

Output Specification:

For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11结尾无空行

Sample Output:

Yes
Yes
No
No结尾无空行

Code:

#include <bits/stdc++.h>
using namespace std;

struct node
{
    int pro;
    bool operator<(const node &a) const
    {
        return pro > a.pro;
    }
};

priority_queue<node> p;
map<char, int> ctr;
int sum = 0;
int n, m;

bool cmp2(string a, string b)
{
    return a.length() > b.length();
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
    {
        char a;
        int b;
        cin >> a >> b;
        // ctr[a] = b;
        ctr.insert(pair<char, int>(a, b));
        node n1;
        n1.pro = b;
        p.push(n1);
    }
    // 一共n-1次合并 计算value
    for (int i = n; i < 2 * n - 1; i++)
    {
        node n1, n2, n3;
        n1 = p.top();
        p.pop();
        n2 = p.top();
        p.pop();
        n3.pro = n1.pro + n2.pro;
        sum += n3.pro;
        p.push(n3);
    }
    cin >> m;
    for (int i = 0; i < m; i++)
    {
        int sum2 = 0;
        string s[1000];
        for (int j = 0; j < n; j++)
        {
            char a;
            string b;
            cin >> a >> b;
            sum2 += ctr[a] * b.length();
            s[j] = b;
        }
        if (sum != sum2)
        {
            cout << "No" << endl;

            continue;
        } //判权值和是否相等
        sort(s, s + n - 1, cmp2);
        bool flag = 1;
        for (int x = 0; x < n - 1; x++)
            for (int y = x + 1; y < n; y++)
                if (s[x].find(s[y]) == 0)
                    flag = 0; //任意编码不能是其余编码的前缀
        if (flag)
            cout << "Yes" << endl;
        else
            cout << "No" << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值