874. 筛法求欧拉函数

874. 筛法求欧拉函数

给定一个正整数 nn,求 1∼n 中每个数的欧拉函数之和。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。

数据范围

1≤n≤106

输入样例:
6
输出样例:
12
欧拉知识点个人总结
/*
1.欧拉函数给定i,求1~i中与i互质的数的个数。其中,互质的概念就是公约数只有1的两个整数。比如(2 和 5 ,13 和 1)
根据欧拉定理。phi[i] =  i * ( 1 - 1/pj )  Note:这里不需要pj的次数,只要出现了pj

其中pj是i的所有质因子。这里有涉及了i的质因子怎么求。可以用y总的模版。
时间复杂度就是求质因子的复杂度 + 一个多数乘法 o(sqrt(n)) 

2.基于线性筛选方法的欧拉函数
给定一个i,要求从1~i中所有欧拉函数的之和

2.1.当i为质数的时候,i的欧拉函数,也就是1~i中与i互质的数字个数就是 i-1个(除了i的其他整数) 。
互质:互质是公约数只有1的两个整数

2.2.当i不是质数的时候,开始筛选欧数字. Note: pj是从小到大枚举
    2.2.1 i%primes[j]==0     phi[i * pj] = pj * phi(i) ; //这个要推
    大概就是pj是i的最小质因子,i的分解质因数中,已经有pj。所以 phi[i * pj] = pj * phi(i)
    2.2.2 i%primes[j]!=0     phi[i * pj] =( pj-1) * phi(i) ; //这个要推
    大概就是pj是i * pj的最小质因子,i的分解质因数中,没有pj。所以 phi[i * pj] = phi(i) * pj * (( pj-1) / pj)
    = phi(i) * ( pj-1) ; 
    
 */
代码:
#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 10;
int primes[N], cnt;
int euler[N];
bool st[N];

void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        if (!st[i])
        {
            primes[cnt++] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j++)
        {
            int t = primes[j] * i;
            st[t] = 1;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

int main()
{
    int n;
    cin >> n;
    get_eulers(n);

    long long res;
    for (int i = 1; i <= n; i++)
        res += euler[i];

    cout << res << endl;

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值