翰翰和达达饲养了 N 只小猫,这天,小猫们要去爬山。
经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<)。
翰翰和达达只好花钱让它们坐索道下山。
索道上的缆车最大承重量为 W,而 N 只小猫的重量分别是 C1、C2……CN。
当然,每辆缆车上的小猫的重量之和不能超过 W。
每租用一辆缆车,翰翰和达达就要付 1 美元,所以他们想知道,最少需要付多少美元才能把这 N 只小猫都运送下山?
输入格式
第 1 行:包含两个用空格隔开的整数,N 和 W。
第 2…N+1 行:每行一个整数,其中第 i+1 行的整数表示第 i 只小猫的重量 Ci。
输出格式
输出一个整数,表示最少需要多少美元,也就是最少需要多少辆缆车。
数据范围
1≤N≤18,
1≤Ci≤W≤108
输入样例:
5 1996
1
2
1994
12
29
输出样例:
2
代码:
/*
优化搜索顺序. 可以按小猫重量降序的顺序搜索, 也就是先考虑重的小猫. 小猫重量越重, 其缆车
剩余承重越少, 后续可加入小猫越少 — 分支越少.
可行性剪枝: 判断🐱加入缆车后是否超重, 对于不可行 — 超重的分支, 可以直接返回.
最优性剪枝: 若当前分支缆车数不小于当前最优解, 可直接返回.
*/
// 枚举小猫的做法
#include <bits/stdc++.h>
using namespace std;
const int N = 20;
int p[N];
int sum[N];
int n;
int w;
int ans = N;
void dfs(int g, int num)// 已经有了g个车厢,已经放完num个小猫
{
if (g >= ans)
return;
if (num == n)
{
ans = g;
return;
}
for (int i = 0; i < g; i++)
{
if (sum[i] <= w - p[num])
{
sum[i] += p[num];
dfs(g, num + 1);
sum[i] -= p[num];
}
}
// 不需要flag 都需要进行 因为添加车厢也是一种情况
sum[g] += p[num];
dfs(g + 1, num + 1);
sum[g] -= p[num];
}
int main()
{
cin >> n >> w;
for (int i = 0; i < n; i++)
cin >> p[i];
sort(p, p + n, greater<int>());
dfs(1, 0);
cout << ans;
return 0;
}