在郊区有 N 座通信基站,P 条 双向 电缆,第 i 条电缆连接基站 Ai 和 Bi。
特别地,1 号基站是通信公司的总站,N 号基站位于一座农场中。
现在,农场主希望对通信线路进行升级,其中升级第 i 条电缆需要花费 Li。
电话公司正在举行优惠活动。
农产主可以指定一条从 1 号基站到 N 号基站的路径,并指定路径上不超过 K 条电缆,由电话公司免费提供升级服务。
农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。
求至少用多少钱可以完成升级。
输入格式
第 1 行:三个整数 N,P,K。
第 2…P+1 行:第 i+1 行包含三个整数 Ai,Bi,Li。
输出格式
包含一个整数表示最少花费。
若 1 号基站与 N 号基站之间不存在路径,则输出 −1。
数据范围
0≤K<N≤1000,
1≤P≤10000,
1≤Li≤1000000
输入样例:
5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6
输出样例:
4
思路:
/*
题目描述到有k条边可以免费升级,因此只需要求1~N的所有路径中第k + 1大的值的最小值,是最大最小值模型,因此可以使用二分求解
对于区间[0,1000001]中的某一个点x:
1、check(x)函数表示:从1走到N,最少经过的长度大于x的边数的数量是否小于等于k,若是则返回true,否则返回false
2、求出从1到N最少经过几条长度大于x的边
可以分类成:
如果边大于x,则边权看成1
如果边长小于等于x,则边权看成0
注意:
1、初始l = 0,r = 1000001的原因是:如果1号点到n号点是不连通的,最后二分出来的值一定是1000001,表示无解
2、对于只有两种边权是0,1可以使用双端队列求解。
*/
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 1010, M = 20010;
int n, m, k;
int h[N], e[M], ne[M], w[M], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
bool check(int bound)
{
memset(dist, 0x3f, sizeof(dist));
memset(st, 0, sizeof(st));
deque<int> qu;
dist[1] = 0;
qu.push_back(1);
while (qu.size())
{
int t = qu.front();
qu.pop_front();
if (st[t])
continue;
st[t] = 1;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i], v = w[i] > bound;
if (!st[j] && dist[j] > dist[t] + v)
{
dist[j] = dist[t] + v;
if (v == 1)
qu.push_back(j);
else
qu.push_front(j);
}
}
}
return dist[n] <= k;
}
int main()
{
cin >> n >> m >> k;
memset(h, -1, sizeof(h));
while (m--)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c), add(b, a, c);
}
int l = 0, r = 1e6 + 1;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid))
r = mid;
else
l = mid + 1;
}
if (r == 1e6 + 1)
r = -1;
cout << r << endl;
return 0;
}