Farmer John 的草地可以被看作是一个由正方形方格组成的巨大的二维方阵(想象一个巨大的棋盘)。
初始时,草地上是空的。
Farmer John 将会逐一地将 N 头奶牛加入到草地上。
第 i 头奶牛将会占据方格 (xi,yi),不同于所有已经被其他奶牛占据的方格。
一头奶牛被称为是「舒适的」,如果它水平或竖直方向上与恰好三头其他奶牛相邻。
Farmer John 对他的农场上舒适的奶牛数量感兴趣。
对 1…N 中的每一个 i,输出第 i 头奶牛加入到草地上之后舒适的奶牛的数量。
输入格式
输入的第一行包含一个整数 N。
以下 N 行每行包含两个空格分隔的整数,表示一头奶牛所在的方格坐标 (xi,yi)。
输入保证所有方格的坐标是不同的。
输出格式
输出的第 i 行包含前 i 头奶牛加入到草地上之后舒适的奶牛的数量。
数据范围
1≤N≤105,
0≤xi,yi≤1000
输入样例:
8
0 1
1 0
1 1
1 2
2 1
2 2
3 1
3 2
输出样例:
0
0
0
1
0
0
1
2
样例解释
在前四头奶牛加入之后,位于 (1,1) 的奶牛是舒适的。
在前七头奶牛加入之后,位于 (2,1) 的奶牛是舒适的。
在前八头奶牛加入之后,位于 (2,1) 和 (2,2) 的奶牛是舒适的。
代码:
// 枚举
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int g[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int n;
int get(int x, int y)
{
int res = 0;
for (int i = 0; i < 4; i++)
{
int a = x + dx[i], b = y + dy[i];
if (g[a][b])
res++;
}
return res;
}
int main()
{
cin >> n;
int res = 0;
while (n--)
{
int x, y;
cin >> x >> y;
x++, y++;
g[x][y] = 1;
if (get(x, y) == 3)
res++;
for (int i = 0; i < 4; i++)
{
int a = x + dx[i], b = y + dy[i];
if (g[a][b])
{
int t = get(a, b);
if (t == 3)
res++;
else if (t == 4)
res--;
}
}
cout << res << endl;
}
return 0;
}