368. 银河

银河中的恒星浩如烟海,但是我们只关注那些最亮的恒星。

我们用一个正整数来表示恒星的亮度,数值越大则恒星就越亮,恒星的亮度最暗是 1。

现在对于 N 颗我们关注的恒星,有 M 对亮度之间的相对关系已经判明。

你的任务就是求出这 N 颗恒星的亮度值总和至少有多大。

输入格式

第一行给出两个整数 N 和 M。

之后 M 行,每行三个整数 T,A,B,表示一对恒星 (A,B) 之间的亮度关系。恒星的编号从 1 开始。

如果 T=1,说明 A 和 B 亮度相等。
如果 T=2,说明 A 的亮度小于 B 的亮度。
如果 T=3,说明 A 的亮度不小于 B 的亮度。
如果 T=4,说明 A 的亮度大于 B 的亮度。
如果 T=5,说明 A 的亮度不大于 B 的亮度。

输出格式

输出一个整数表示结果。

若无解,则输出 −1。
数据范围

N≤100000,M≤100000

输入样例:
5 7 
1 1 2 
2 3 2 
4 4 1 
3 4 5 
5 4 5 
2 3 5 
4 5 1
输出样例:
11
思路:
/*
N 颗恒星的亮度值总和至少有多大
全部都要满足
求最小->求所有下界的最大->最长路 √
求最大->求所有上界的最小->最短路

最长路

 dist[j] ≥ dist[t] + w[i]  t+w[i]→j

T=1: A=B => A≥B B≥A   B+0→A A+0→B
T=2: A<B => B≥A+1     A+1→B
T=3: A≥B => A≥B       B+0→A
T=4: A>B => A≥B+1     B+1→A
T=5: A≤B => B≥A       A+0→B

水过:
spfa最长路 - 做完后每个点的距离就是最小值
1 边是正的 - 存在正环 => 无解
2 有解 
    必须有绝对值
    超级源点(能到所有边)
    x[i]≥x[0]+1
不同于糖果用栈保证spfa的时间复杂度O(n)

正解:
这里用强连通分量保证时间复杂度

原理:
首先用tarjan求scc
一个正环一定是某一个scc当中的,对于一个scc中的所有边,
只要一个边的权重是严格>0
如 u + w → v,w>0  
又u和v 在一个scc中,则v也一定能到u(且w[v][u]>=0(因为我们的不等式约束得到的))
即只要scc中有一个边>=0 就必然存在正环
则 scc中无正环 <=> scc中的边==0 <=> scc中所有点相同(由不等式知双向边==0时 A==B )
                                <=> 可近似看成一个点
那么当没有正环时,经过tarjan后的图就是topo图
    x[i]最小 
      <=>
求 x[i]下界最大 
x[i]≥ x[j] + c[k]
    ≥ x[j]+x[j+1] ...
    ≥ 0 + Σc[k]
      <=>
    求最长路dist[i]

总而言之
1 tarjan
2 缩点+建图
3 topo序dp最长路
代码:
// 非负权边则可用强连通分量的做法代替spfa
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 6e5 + 10;
typedef long long LL;

int n, m;
int h[N], hs[N], e[M], ne[M], w[M], idx;
int dfn[N], low[N], timestamp;
int stk[N], top;
int scc_cnt, id[N], scc_size[N];
bool in_stk[N];
int dist[N];

void add(int h[], int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}

void tarjan(int u)
{
    dfn[u] = low[u] = ++timestamp;
    stk[++top] = u, in_stk[u] = true;

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!dfn[j])
        {
            tarjan(j);
            low[u] = min(low[u], low[j]);
        }
        else if (in_stk[j])
            low[u] = min(low[u], dfn[j]);
    }

    if (dfn[u] == low[u])
    {
        int y;
        scc_cnt++;
        do
        {
            y = stk[top--];
            in_stk[y] = false;
            id[y] = scc_cnt;
            scc_size[scc_cnt]++;
        } while (y != u);
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    memset(hs, -1, sizeof hs);

    for (int i = 1; i <= n; i++)
        add(h, 0, i, 1);

    for (int i = 0; i < m; i++) // 差分约束
    {
        int a, b, t;
        scanf("%d %d %d", &t, &a, &b);
        if (t == 1)
            add(h, b, a, 0), add(h, a, b, 0);
        else if (t == 2)
            add(h, a, b, 1);
        else if (t == 3)
            add(h, b, a, 0);
        else if (t == 4)
            add(h, b, a, 1);
        else
            add(h, a, b, 0);
    }

    tarjan(0); // 0为源点

    bool success = true;
    for (int u = 0; u <= n; u++)
    {
        for (int i = h[u]; i != -1; i = ne[i])
        {
            int j = e[i];
            int a = id[u], b = id[j];
            if (a == b)
            {
                if (w[i] > 0) // 强连通有正权则有环
                {
                    success = false;
                    break;
                }
            }
            else
                add(hs, a, b, w[i]); // 有重复也没关系
        }
        if (!success)
            break;
    }

    if (!success)
        puts("-1");
    else
    {
        for (int u = scc_cnt; u != 0; u--) // dp求最长边   id最大的其实就是出发点 
        {
            for (int i = hs[u]; i != -1; i = ne[i])
            {
                int j = e[i];
                dist[j] = max(dist[j], dist[u] + w[i]);
            }
        }

        LL res = 0;
        for (int i = 1; i <= scc_cnt; i++)
            res += (LL)dist[i] * scc_size[i];

        printf("%lld\n", res);
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值