395. 冗余路径

该博客探讨了一种图论应用,即如何在奶牛草场之间建立新的道路,以确保每对草场间至少有两条不相交的路径。通过双连通分量和桥的概念,算法可以找出最少需要新建的道路数量,从而实现路径的多样化。文章介绍了相关算法和代码实现,旨在解决实际问题中的路径规划挑战。
摘要由CSDN通过智能技术生成

为了从 F 个草场中的一个走到另一个,奶牛们有时不得不路过一些她们讨厌的可怕的树。

奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择。

每对草场之间已经有至少一条路径

给出所有 R 条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量,路径由若干道路首尾相连而成。

两条路径相互分离,是指两条路径没有一条重合的道路。

但是,两条分离的路径上可以有一些相同的草场。

对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路。

输入格式

第 1 行输入 F 和 R。

接下来 R 行,每行输入两个整数,表示两个草场,它们之间有一条道路。

输出格式

输出一个整数,表示最少的需要新建的道路数。

数据范围

1≤F≤5000,
F−1≤R≤10000

输入样例:
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
输出样例:
2
思路:
/*
无向图 
双连通分量
1 边的双连通分量  e-dcc  极大的不包含桥的连通块
2 点的双连通分量  v-dcc  极大的不包含割点的连通块

删除后不连通 的 两个定义

桥  
 o-o 桥o-o
 | | ↓ | |
 o-o - o-o 
1 如何找桥? x
            /
           y
x和y之间是桥 <=> dfn[x] < low[y] y无论如何往上走不到x 
                +y能到的最高的点low[y] = dfn[y]

2 如何找所有边的双连通分量?
2.1 将所有桥删掉
2.2 stack
dfn[x] == low[x] 
<=> x无论如何走不到x的上面
<=> 从x开始的子树可以用一个栈存

每个割点至少属于两个连通分量

树里的每条边都是桥(割边) 
每一个点为边双连通分量 每一条边及两端的点为点双连通分量
     o
    / \
   o   o
  /\   /\
 o  o o  o

1 边双连通分量 
tarjan回顾
dfn[x] dfs序时间戳 
low[x] x能达到的时间戳最小的点

无向图不存在横插边
     o
    / \
   o   o
  /   / \
 y ← x   o
   →
x能往左的话 由于无向边 所以y也能往右,
那么在之前dfs的时候就把x先于x的父节点加进来了
*/
/*
新建一条道路 使得每两个草场之间都有一个分离的路径
给定一个无向连通图,问最少加几条边,可以将其变为一个边双连通分量

结论:一个边的双连通分量 <=> 任何两个点之间至少存在两个不相交路径
充分性: 对于每两个点都有互相分离的路径的话,则必然为强连通分量
反证 假设有桥(非双连通) x,y必然经过中间的桥 则只x→y的路径必在桥上相交
 o-x 桥y-o
 | | ↓ | |
 o-o - o-o
必要性:图是一个边双连通分量 <=> 不包含桥
        则一定对任意两点x,y 
        x,y之间至少存在两条互相分离(不相交)的路径
反证:假设存在两条相交路径
     那么x→y中间必然有桥
//  o-o-o-o-o 蓝色路径 (从x出发到y经过边数最少的路径)
//   - - - -  绿色路径 
//  x       y



对双连通分量做完缩点后 只剩桥和点
         o
        / \
       o   o
      /\   /\
     o  o o  o
    / \  
   o   o

         o
        / \
       o   o
      /\   /\
     o  o-o  o
    / \   |  |
   o   o__|  |
   |_________|
   可以发现对左右两个叶子节点连通后,根节点连向左右叶子节点的边就可以删去了
   同理 再把第2个和第4个叶子节点连通后,根节点连向第2个和第4个叶子节点的边也可以删去
   第3个叶子节点随便连
  给叶子节点按对称性加上边后就没有桥 <=> 变成边的双连通分量
  这里cnt= 5 加了ans=(cnt+1)/2=3条
  ans >= 下界[cnt/2]取整 == [(cnt+1)/2]取整
        其中 cnt为缩完点后度数==1的点的个数


*/
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 5010, M = 20010;

int n, m;
int h[N], ne[M], e[M], idx;
/*
无向图是联通的,我从一个点出发就能遍历整个图了,就按照遍历的先后顺序给定的timestamp就行了,也就是dfn值和遍历的先后顺序是绑定,所以走到dfn值不为零的地方就一定是后向边,走进去判断就完事了,当然反边的话就没什么好判断的。
*/
int stk[N], top;
int dfn[N], low[N], timestamp;
int id[N], dcc_cnt;
bool is_bridge[N];
int d[N];

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

void tarjan(int u, int from) // 不能用点 否则重复边会有影响
{
    dfn[u] = low[u] = ++timestamp;
    stk[++top] = u;

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!dfn[j])
        {
            tarjan(j, i);
            low[u] = min(low[u], low[j]);
            if (dfn[u] < low[j]) // 判断割边
                is_bridge[i] = is_bridge[i ^ 1] = true;
            // 添加的时候一起的 所以异或1就可以得到反向边
        }
        else if (i != (from ^ 1)) // 判断反向边
            low[u] = min(low[u], dfn[j]);
    }

    if (dfn[u] == low[u])
    {
        int y;
        dcc_cnt++;
        do
        {
            y = stk[top--];
            id[y] = dcc_cnt;
        } while (y != u);
    }
}

int main()
{
    scanf("%d %d", &n, &m);
    memset(h, -1, sizeof(h));
    for (int i = 0; i < m; i++)
    {
        int a, b;
        scanf("%d %d", &a, &b);
        add(a, b), add(b, a);
    }

    tarjan(1, -1);

    for (int i = 0; i < 2 * m; i++)  // 算边连通分量的度数
    {
        if (is_bridge[i])
            d[id[e[i]]]++;
    }

    int cnt = 0;
    for (int i = 1; i <= dcc_cnt; i++)
    {
        if (d[i] == 1)
            cnt++;
    }

    printf("%d\n", (cnt + 1) / 2);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值