机器学习练习 2 - 逻辑回归

1 逻辑回归

在训练的初始阶段,我们将要构建一个逻辑回归模型来预测,某个学生是否被大学录取。
设想你是大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。
现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。

1.1 数据可视化

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
/opt/conda/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)
/opt/conda/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)

In [2]:

path = '/home/kesci/input/andrew_ml_ex22391/ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
data.head()

Out[2]:

Exam 1Exam 2Admitted
034.62366078.0246930
130.28671143.8949980
235.84740972.9021980
360.18259986.3085521
479.03273675.3443761

In [3]:

positive = data[data['Admitted'].isin([1])]
negative = data[data['Admitted'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
plt.show()

img

1.2 实现

1.2.1 sigmoid 函数

逻辑回归函数为

h θ = g ( θ T x ) h_\theta=g(\theta^Tx) hθ=g(θTx)
g代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function),公式为:

g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1

合起来,我们得到逻辑回归模型的假设函数:

h θ ( x ) = 1 1 + e − θ T x h_\theta( x ) =\frac{1}{1+{e^{-\theta^T x}}} hθ(x)=1+eθTx1

In [4]:

# 实现sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

nums = np.arange(-10, 10, step=1)

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

1.2.2 代价函数和梯度

代价函数:

J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]

梯度:

∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( \theta \right)}{\partial {{\theta }_{j}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} θjJ(θ)=m1i=1m(hθ(x(i))y(i))xj(i)

虽然这个梯度和前面线性回归的梯度很像,但是要记住 h θ ( x ) h_\theta(x) hθ(x)是不一样的
实现完成后,用初始θ代入计算,结果应该是0.693左右

In [5]:

# 实现代价函数
def cost(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y) 
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    return np.sum(first - second) / (len(X))

初始化X,y,θ

In [6]:

# 加一列常数列
data.insert(0, 'Ones', 1)

# 初始化X,y,θ
cols = data.shape[1]
X = data.iloc[:,0:cols-1]
y = data.iloc[:,cols-1:cols]
theta = np.zeros(3)

# 转换X,y的类型
X = np.array(X.values)
y = np.array(y.values)

In [7]:

# 检查矩阵的维度
X.shape, theta.shape, y.shape

Out[7]:

((100, 3), (3,), (100, 1))

In [8]:

# 用初始θ计算代价
cost(theta, X, y)

Out[8]:

0.6931471805599453

In [9]:

# 实现梯度计算的函数(并没有更新θ)
def gradient(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    
    error = sigmoid(X * theta.T) - y
    
    for i in range(parameters):
        term = np.multiply(error, X[:,i])
        grad[i] = np.sum(term) / len(X)
    
    return grad

1.2.3 用工具库计算θ的值

在此前的线性回归中,我们自己写代码实现的梯度下降(ex1的2.2.4的部分)。当时我们写了一个代价函数、计算了他的梯度,然后对他执行了梯度下降的步骤。这次,我们不自己写代码实现梯度下降,我们会调用一个已有的库。这就是说,我们不用自己定义迭代次数和步长,功能会直接告诉我们最优解。
andrew ng在课程中用的是Octave的“fminunc”函数,由于我们使用Python,我们可以用scipy.optimize.fmin_tnc做同样的事情。
(另外,如果对fminunc有疑问的,可以参考下面这篇百度文库的内容https://wenku.baidu.com/view/2f6ce65d0b1c59eef8c7b47a.html )

现在可以用SciPy's truncated newton(TNC)实现寻找最优参数。如果一切顺利的话,最有θ对应的代价应该是0.203

In [10]:

import scipy.optimize as opt
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
result

Out[10]:

(array([-25.16131863,   0.20623159,   0.20147149]), 36, 0)

让我们看看在这个结论下代价函数计算结果是什么个样子~

In [11]:

# 用θ的计算结果代回代价函数计算
cost(result[0], X, y)

Out[11]:

0.20349770158947458

画出决策曲线

In [12]:

plotting_x1 = np.linspace(30, 100, 100) # x1
plotting_h1 = ( - result[0][0] - result[0][1] * plotting_x1) / result[0][2] # x2
# 画出 θX等于0的曲线
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(plotting_x1, plotting_h1, 'y', label='Prediction')
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
plt.show()

img

1.2.4 评价逻辑回归模型

接下来,我们需要编写一个函数,用我们所学的参数theta来为数据集X输出预测。然后,我们可以使用这个函数来给我们的分类器的训练精度打分。

逻辑回归模型的假设函数:

h θ ( x ) = 1 1 + e − θ T X {{h}_{\theta }}\left( x \right)=\frac{1}{1+{{e}^{-{{\theta }^{T}}X}}} hθ(x)=1+eθTX1

h θ {{h}_{\theta }} hθ大于等于0.5时,预测 y=1

h θ {{h}_{\theta }} hθ小于0.5时,预测 y=0 。

在确定参数之后,我们可以使用这个模型来预测学生是否录取。如果一个学生exam1得分45,exam2得分85,那么他录取的概率应为0.776

In [13]:

# 实现hθ
def hfunc1(theta, X):
    return sigmoid(np.dot(theta.T, X))
hfunc1(result[0],[1,45,85])

Out[13]:

0.7762906238162848

另一种评价θ的方法是看模型在训练集上的正确率怎样。写一个predict的函数,给出数据以及参数后,会返回“1”或者“0”。然后再把这个predict函数用于训练集上,看准确率怎样。

In [14]:

# 定义预测函数
def predict(theta, X):
    probability = sigmoid(X * theta.T)
    return [1 if x >= 0.5 else 0 for x in probability]

In [15]:

# 统计预测正确率
theta_min = np.matrix(result[0])
predictions = predict(theta_min, X)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
accuracy = 89%

我们的逻辑回归分类器预测正确,如果一个学生被录取或没有录取,达到89%的精确度。不坏!记住,这是训练集的准确性。我们没有保持住了设置或使用交叉验证得到的真实逼近,所以这个数字有可能高于其真实值(这个话题将在以后说明)。

2 正则化逻辑回归

在训练的第二部分,我们将实现加入正则项提升逻辑回归算法。
设想你是工厂的生产主管,你有一些芯片在两次测试中的测试结果,测试结果决定是否芯片要被接受或抛弃。你有一些历史数据,帮助你构建一个逻辑回归模型。

总结一下:

欠拟合:泛化能力差,训练样本集准确率低,测试样本集准确率低。
过拟合:泛化能力差,训练样本集准确率高,测试样本集准确率低。
合适的拟合程度:泛化能力强,训练样本集准确率高,测试样本集准确率高
欠拟合原因:

训练样本数量少
模型复杂度过低
参数还未收敛就停止循环
欠拟合的解决办法:

增加样本数量
增加模型参数,提高模型复杂度
增加循环次数
查看是否是学习率过高导致模型无法收敛
过拟合原因:

数据噪声太大
特征太多
模型太复杂
过拟合的解决办法:

清洗数据
减少模型参数,降低模型复杂度
增加惩罚因子(正则化),保留所有的特征,但是减少参数的大小(magnitude)。

2.1 数据可视化

In [16]:

path =  '/home/kesci/input/andrew_ml_ex22391/ex2data2.txt'
data_init = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted'])
data_init.head()

Out[16]:

Test 1Test 2Accepted
00.0512670.699561
1-0.0927420.684941
2-0.2137100.692251
3-0.3750000.502191
4-0.5132500.465641

In [17]:

positive2 = data_init[data_init['Accepted'].isin([1])]
negative2 = data_init[data_init['Accepted'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.legend()
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
plt.show()

img

以上图片显示,这个数据集不能像之前一样使用直线将两部分分割。而逻辑回归只适用于线性的分割,所以,这个数据集不适合直接使用逻辑回归。

2.2 特征映射

一种更好的使用数据集的方式是为每组数据创造更多的特征。所以我们为每组x1,x2添加了最高到6次幂的特征

In [18]:

degree = 6
data2 = data_init
x1 = data2['Test 1']
x2 = data2['Test 2']

data2.insert(3, 'Ones', 1)

for i in range(1, degree+1):
    for j in range(0, i+1):
        data2['F' + str(i-j) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
#此处原答案错误较多,已经更正

data2.drop('Test 1', axis=1, inplace=True)
data2.drop('Test 2', axis=1, inplace=True)

data2.head()

Out[18]:

AcceptedOnesF10F01F20F11F02F30F21F12F23F14F05F60F51F42F33F24F15F06
0110.0512670.699560.0026280.0358640.4893840.0001350.0018390.0250890.0009000.0122780.1675421.815630e-082.477505e-070.0000030.0000460.0006290.0085890.117206
111-0.0927420.684940.008601-0.0635230.469143-0.0007980.005891-0.0435090.002764-0.0204120.1507526.362953e-07-4.699318e-060.000035-0.0002560.001893-0.0139810.103256
211-0.2137100.692250.045672-0.1479410.479210-0.0097610.031616-0.1024120.015151-0.0490770.1589709.526844e-05-3.085938e-040.001000-0.0032380.010488-0.0339730.110047
311-0.3750000.502190.1406251 1#梯度下降得到的结果是matrix([[-3.24140214, 1.1272942 ]])python0.252195-0.0527340.070620-0.0945730.017810-0.0238510.0319402.780914e-03-3.724126e-030.004987-0.0066790.008944-0.0119780.016040
411-0.5132500.465640.263426-0.2389900.216821-0.1352030.122661-0.1112830.026596-0.0241280.0218901.827990e-02-1.658422e-020.015046-0.0136500.012384-0.0112350.010193

5 rows × 29 columns

2.3 代价函数和梯度

这一部分要实现计算逻辑回归的代价函数和梯度的函数。代价函数公式如下:

J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]}+\frac{\lambda }{2m}\sum\limits_{j=1}^{n}{\theta _{j}^{2}} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2

记住 θ 0 \theta_0 θ0是不需要正则化的,下标从1开始。(可以理解为,过度拟合和特征变量有关,需要缩小特征变量的系数,theta0和特征变量无关,不用处理)
梯度的第j个元素的更新公式为:
θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) ) {\theta_0}:={\theta_0}-a\frac{1}{m}\sum\limits_{i=1}^{m}{(({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})x_{0}^{(i)}}) θ0:=θ0am1i=1m((hθ(x(i))y(i))x0(i))

θ j : = θ j − a [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] {\theta_j}:={\theta_j}-a[\frac{1}{m}\sum\limits_{i=1}^{m}{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})x_{j}^{\left( i \right)}}+\frac{\lambda }{m}{\theta_j}] θj:=θja[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj]

对上面的算法中 j=1,2,…,n 时的更新式子进行调整可得:

θ j : = θ j ( 1 − a λ m ) − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {{\theta }_{j}}:={{\theta }_{j}}(1-a\frac{\lambda }{m})-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{j}^{(i)}} θj:=θj(1amλ)am1i=1m(hθ(x(i))y(i))xj(i)

把初始θ(所有元素为0)带入,代价应为0.693

In [19]:

# 实现正则化的代价函数
def costReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2))
    return np.sum(first - second) / len(X) + reg

In [20]:

# 实现正则化的梯度函数
def gradientReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    
    error = sigmoid(X * theta.T) - y
    
    for i in range(parameters):
        term = np.multiply(error, X[:,i])
        
        if (i == 0): # 特判
            grad[i] = np.sum(term) / len(X)
        else:
            grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i])
    
    return grad

In [21]:

# 初始化X,y,θ
cols = data2.shape[1]
X2 = data2.iloc[:,1:cols]
y2 = data2.iloc[:,0:1]
theta2 = np.zeros(cols-1)

# 进行类型转换
X2 = np.array(X2.values)
y2 = np.array(y2.values)

# λ设为1
learningRate = 1

In [22]:

# 计算初始代价
costReg(theta2, X2, y2, learningRate)

Out[22]:

0.6931471805599454

2.3.1 用工具库求解参数

In [23]:

'''
有约束的多元函数问题,提供梯度信息,使用截断牛顿法。
调用:
scipy.optimize.fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=-1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1, rescale=-1, disp=None, callback=None)

最常使用的参数:
func:优化的目标函数
x0:初值
fprime:提供优化函数func的梯度函数,不然优化函数func必须返回函数值和梯度,或者设置approx_grad=True
approx_grad :如果设置为True,会给出近似梯度
args:元组,是传递给优化函数的参数

返回:
x : 数组,返回的优化问题目标值
nfeval : 整数,function evaluations的数目
在进行优化的时候,每当目标优化函数被调用一次,就算一个function evaluation。在一次迭代过程中会有多次function evaluation。这个参数不等同于迭代次数,而往往大于迭代次数。
'''

result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate))
result2

Out[23]:

(array([ 1.27271026,  0.62529965,  1.18111686, -2.01987398, -0.91743189,
        -1.43166928,  0.12393228, -0.36553118, -0.35725404, -0.17516291,
        -1.45817009, -0.05098418, -0.61558555, -0.27469165, -1.19271298,
        -0.24217841, -0.20603299, -0.04466178, -0.27778951, -0.29539514,
        -0.45645982, -1.04319155,  0.02779373, -0.2924487 ,  0.0155576 ,
        -0.32742405, -0.1438915 , -0.92467487]), 32, 1)

最后,我们可以使用第1部分中的预测函数来查看我们的方案在训练数据上的准确度。

In [24]:

theta_min = np.matrix(result2[0])
predictions = predict(theta_min, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
# accuracy = 98%

2.3.2 scikit-learn

虽然我们实现了这些算法,值得注意的是,我们还可以使用高级Python库像scikit-learn来解决这个问题。

from sklearn import linear_model#调用sklearn的线性回归包
model = linear_model.LogisticRegression(penalty='l2', C=1.0)
model.fit(X2, y2.ravel())

model.score(X2, y2)
# 0.6610169491525424
# model.score(data_X, data_y) 它可以对 Model 用 R^2 的方式进行打分,输出精确度。

2.4 画出决策的曲线

In [25]:

def hfunc2(theta, x1, x2): # 求多项式的值
    temp = theta[0][0] # result2   θ0
    place = 0
    for i in range(1, degree+1):
        for j in range(0, i+1):
            temp+= np.power(x1, i-j) * np.power(x2, j) * theta[0][place+1]
            place+=1
    return temp

In [26]:

def find_decision_boundary(theta):
    t1 = np.linspace(-1, 1.5, 1000)
    t2 = np.linspace(-1, 1.5, 1000)

    cordinates = [(x, y) for x in t1 for y in t2]
    x_cord, y_cord = zip(*cordinates)
    h_val = pd.DataFrame({'x1':x_cord, 'x2':y_cord})
    h_val['hval'] = hfunc2(theta, h_val['x1'], h_val['x2'])

    decision = h_val[np.abs(h_val['hval']) < 2 * 10**-3] #寻找边界
    return decision.x1, decision.x2

In [27]:

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result2)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()

img

2.5 改变λ,观察决策曲线

λ=0时过拟合

In [28]:

learningRate2 = 0
result3 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate2))

Out[28]:

(array([   14.60193336,    21.20326682,     4.60748805,  -150.30636263,
          -70.51421716,   -65.71761632,  -167.22986423,  -100.93094956,
          -58.4583472 ,     9.35117823,   538.72438097,   445.25267052,
          633.43046793,   239.567217  ,    92.6608774 ,   300.20568543,
          362.78215934,   440.45538844,   196.63024035,    52.26698467,
          -13.32416223,  -639.85098768,  -782.82561038, -1230.55113233,
         -846.7737968 ,  -793.91524305,  -273.62741174,   -51.4586635 ]),
 280,
 3)

In [29]:

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result3)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()

img

λ=100时欠拟合

In [30]:

learningRate3 = 100
result4 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate3))

In [31]:

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result4)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()

img

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值