AI作业7-卷积

本文通过Python和TensorFlow展示了如何利用卷积操作对图像进行边缘检测和锐化处理。首先介绍了卷积、卷积核、多通道、特征图和特征选择等概念,接着通过Sobel算子实现对Lena图像的边缘检测,然后展示了如何通过定制卷积核来实现图像的锐化效果。
摘要由CSDN通过智能技术生成
1.简单描述卷积、卷积核多通道、特征图、特征选择概念

卷积:卷积核与输入数据进行按元素相乘并求和的操作

卷积核:卷积核是一个小型矩阵,用于在卷积过程中与输入数据进行逐元素相乘并求和的操作。

多通道:多通道是指输入数据具有多个维度。

特征图:特征图是卷积操作后得到的输出数据。

特征选择:特征选择是机器学习中一种降低模型复杂度、提高泛化能力的方法。

2.边缘检测
# coding=gbk
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from PIL import Image
import matplotlib.pyplot as plt
 
plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False  
file_path = 'lena.png'
im = Image.open(file_path).convert('L')  
im = np.array(im, dtype='float32')  # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
 
plt.imshow(im.astype('uint8'), cmap='gray')  # 可视化图片
plt.title('原图')
plt.show()
 
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1)  # 定义卷积
 
sobel_kernel = np.array([[-1, -1, -1],
                  [-1,  8, -1],
                  [-1, -1, -1]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel)  # 给卷积的 kernel 赋值
 
edge1 = conv1(Variable(im))  # 作用在图片上
for i in range(edge1.shape[2]):
    for j in range(edge1.shape[3]):
        if edge1[0][0][i][j]>255:
            edge1[0][0][i][j]=255
        if edge1[0][0][i][j]<0:
            edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape)  # 输出大小
 
plt.imshow(x, cmap='gray')
plt.show()

请添加图片描述

3.锐化
plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False  
file_path = 'lena.png'
im = Image.open(file_path).convert('L')  
im = np.array(im, dtype='float32')  # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
 
plt.imshow(im.astype('uint8'), cmap='gray')  # 可视化图片
plt.title('原图')
plt.show()
 
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1)  # 定义卷积
 
sobel_kernel = np.array([[0, -1, 0],
                         [-1, 5, -1],
                         [0, -1,0]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel)  # 给卷积的 kernel 赋值
 
edge1 = conv1(Variable(im))  # 作用在图片上
for i in range(edge1.shape[2]):
    for j in range(edge1.shape[3]):
        if edge1[0][0][i][j]>255:
            edge1[0][0][i][j]=255
        if edge1[0][0][i][j]<0:
            edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape)  # 输出大小
 
plt.imshow(x, cmap='gray')
plt.show()

`请添加图片描述

4.模糊
plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False  
file_path = 'lena.png'
im = Image.open(file_path).convert('L')  
im = np.array(im, dtype='float32')  # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
 
plt.imshow(im.astype('uint8'), cmap='gray')  # 可视化图片
plt.title('原图')
plt.show()
 
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1)  # 定义卷积
 
sobel_kernel = np.array([[0.0625, 0.125, 0.0625],
                         [0.125, 0.25, 0.125],
                         [0.0625, 0.125,0.0625]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel)  # 给卷积的 kernel 赋值
 
edge1 = conv1(Variable(im))  # 作用在图片上
for i in range(edge1.shape[2]):
    for j in range(edge1.shape[3]):
        if edge1[0][0][i][j]>255:
            edge1[0][0][i][j]=255
        if edge1[0][0][i][j]<0:
            edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape)  # 输出大小
 
plt.imshow(x, cmap='gray')
plt.show()

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值