1.简单描述卷积、卷积核、多通道、特征图、特征选择概念
卷积:卷积核与输入数据进行按元素相乘并求和的操作
卷积核:卷积核是一个小型矩阵,用于在卷积过程中与输入数据进行逐元素相乘并求和的操作。
多通道:多通道是指输入数据具有多个维度。
特征图:特征图是卷积操作后得到的输出数据。
特征选择:特征选择是机器学习中一种降低模型复杂度、提高泛化能力的方法。
2.边缘检测
# coding=gbk
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from PIL import Image
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
file_path = 'lena.png'
im = Image.open(file_path).convert('L')
im = np.array(im, dtype='float32') # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
plt.imshow(im.astype('uint8'), cmap='gray') # 可视化图片
plt.title('原图')
plt.show()
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1) # 定义卷积
sobel_kernel = np.array([[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]], dtype='float32') # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3)) # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel) # 给卷积的 kernel 赋值
edge1 = conv1(Variable(im)) # 作用在图片上
for i in range(edge1.shape[2]):
for j in range(edge1.shape[3]):
if edge1[0][0][i][j]>255:
edge1[0][0][i][j]=255
if edge1[0][0][i][j]<0:
edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape) # 输出大小
plt.imshow(x, cmap='gray')
plt.show()
3.锐化
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
file_path = 'lena.png'
im = Image.open(file_path).convert('L')
im = np.array(im, dtype='float32') # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
plt.imshow(im.astype('uint8'), cmap='gray') # 可视化图片
plt.title('原图')
plt.show()
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1) # 定义卷积
sobel_kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1,0]], dtype='float32') # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3)) # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel) # 给卷积的 kernel 赋值
edge1 = conv1(Variable(im)) # 作用在图片上
for i in range(edge1.shape[2]):
for j in range(edge1.shape[3]):
if edge1[0][0][i][j]>255:
edge1[0][0][i][j]=255
if edge1[0][0][i][j]<0:
edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape) # 输出大小
plt.imshow(x, cmap='gray')
plt.show()
`
4.模糊
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
file_path = 'lena.png'
im = Image.open(file_path).convert('L')
im = np.array(im, dtype='float32') # 将其转换为一个矩阵
print(im.shape[0], im.shape[1])
plt.imshow(im.astype('uint8'), cmap='gray') # 可视化图片
plt.title('原图')
plt.show()
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
conv1 = nn.Conv2d(1, 1, 3 ,bias=False,padding=1) # 定义卷积
sobel_kernel = np.array([[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125,0.0625]], dtype='float32') # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3)) # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel) # 给卷积的 kernel 赋值
edge1 = conv1(Variable(im)) # 作用在图片上
for i in range(edge1.shape[2]):
for j in range(edge1.shape[3]):
if edge1[0][0][i][j]>255:
edge1[0][0][i][j]=255
if edge1[0][0][i][j]<0:
edge1[0][0][i][j]=0
x = edge1.data.squeeze().numpy()
print(x.shape) # 输出大小
plt.imshow(x, cmap='gray')
plt.show()